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Abstract
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2014

In this thesis, problems in the realm of high frequency trading and optimal market

making are established and solved in both single asset and multiple asset economies. For

an agent that is averse to holding large inventories for long periods of time, optimal high

frequency trading strategies are derived via stochastic control theory and solving the

corresponding Hamilton-Jacobi-Bellman equations. These strategies are analyzed and it

is shown that both inventory control and accounting for adverse selection play critical

roles in the success of an algorithmic trading strategy.

In the single asset problem, a market maker actively modifies her limit quotes in an

economy with asymmetric information. She attempts to keep her inventory small and

posts her limit orders in the limit order book at a depth that mitigates her adverse

selection risk, while not posting too deep in the book as to generate no trade flow. In

addition to this behaviour, a profit maximizing investor trading in multiple assets also

seeks out statistical arbitrage opportunities and acts aggressively via the submission of

market orders when it is deemed optimal to do so.

Throughout this thesis, numerical and practical considerations are made a priority. Full

scale calibration and estimation methods are given in detail, as well as dimensional

reductions for large scale numerical procedures, where appropriate. The bridge from

abstract mathematical theory to practical real-time implementation is made complete as

an entire chapter is dedicated to applications on real data.
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Chapter 1

Introduction

1.1 Background

Most of the traditional stock exchanges have converted from open outcry communications

between human traders to electronic markets where the activity between participants is

handled by computers. In addition to those who have made the conversion, such as

the New York Stock Exchange (NYSE) and the London Stock Exchange, new electronic

trading platforms have entered the market – for example, NASDAQ in the US and Chi-X

in Europe. Along with the exchanges, market participants have been increasingly relying

on the use of computers to handle their trading needs. Initially, computers were employed

to execute trades, but today computers manage inventories and make trading decisions;

this modern way of trading in electronic markets is known as algorithmic trading (AT).

In the past, markets were quote driven which means that market makers (MMs) quoted

buy and sell prices and investors would trade with them. Today, there are limit order

markets where all participants can post limit buy or sell orders, i.e., behave as market

makers in the old quote driven market. The limit orders show an intention to buy or sell

and must indicate the number of shares and the price at which the agent is willing to

trade. The limit buy (sell) order with the highest (lowest) price tag is known as the best

bid (best offer). During the trading day, all orders are accumulated in the limit order

book (LOB) until they find a counterparty for execution or are cancelled by the agent

who posted them. The counterparty is a market order which is an order to buy or sell

a number of shares, regardless of the price, which is immediately executed against limit

orders resting in the LOB at the best execution prices.

Trade initiation may be motivated by many factors which have been extensively stud-

1



Chapter 1. Introduction 2

ied in literature; see, for example, Sarkar and Schwartz (2009). Some of these include

asymmetric information, differences in opinion or differential information, and increased

proportion of impatient (relative to patient) traders. Likewise, trade clustering can be

the result of various market events; see Cartea and Jaimungal (2013a). For instance,

increases in market activity could be due to shocks to the fundamental value of the asset,

or the release of public or private information that generates an increase in trading (two-

sided or one-sided) until all information is impounded in stock prices. However, judging

by the sharp rise of AT in the recent years and the explosion in the volume of submis-

sions and order cancellations, it is also plausible to expect that certain AT strategies that

generate trade clustering are not necessarily motivated by the factors mentioned above.

An extreme example occurred during the flash crash of May 6, 2010 where it is clear

that trading between high frequency traders (HFTs) generated more trading giving rise

to the “hot potato” effect.1

The profitability of these low latency AT strategies depends on how they interact with

the dynamics of the LOB and, more importantly, how these AT strategies coexist. The

recent increase in the number of orders and in the frequency of LOB updates shows that

fast traders are responsible for most of the market activity, and it is very difficult to

link news arrival or other classical ways of explaining motives for trade to the activity

one observes in electronic markets. Superfast algorithms make trading decisions in split

milliseconds. This speed, and how other superfast traders react, makes it difficult to

link trade initiation to private or public information arrival, a particular type of trader,

liquidity shock, or any other market event.

Very little is known about the details of the strategies that are employed by AT desks or

the more specialized proprietary high frequency trading trading (HFT) desks. Algorithms

are designed for different purposes and to seek profits in different ways (see Bouchard

et al. (2011)). For example, there are algorithms that are designed to find the best

execution prices for investors who wish to minimize the price impact of large buy or

sell orders (see Almgren and Chriss (2000), Kharroubi and Pham (2010), and Bayraktar

and Ludkovski (2012)), while others are designed to manage inventory risk; see Guéant

et al. (2013). There are high frequency (HF) strategies that specialize in arbitraging

across different trading venues, while others seek to profit from short-term deviations in

stock prices. And finally, there are trading algorithms that seek to profit from providing

liquidity by posting bids and offers simultaneously; see Guilbaud and Pham (2013b) and

Cartea et al. (2013). In previous works on algorithmic trading in LOBs, the mid-price

is assumed to be independent of the arrival and volume of market orders, and market

orders arrive at Poisson times. The works presented in Chapter 3 and Chapter 4 differ

1During that day between 13:45:13 and 13:45:27 CT, HFTs traded over 27,000 contracts which ac-
counted for approximately 49% of the total trading volume, while their net position changed by only
about 200 contracts (see Kirilenko et al. (2010)).
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significantly in that we do not assume independence between the arrival of market orders,

the LOB, and mid-price processes.

The increase in computing power has made it easier for market participants to deploy

ever more complicated trading strategies to profit from changes in market conditions.

Key to the success of HF strategies is the speed at which agents can process information

and news events to take trading decisions. A unique characteristic of HF trading is that

the strategies are designed to hold close to no inventories over very short periods of time

(seconds, minutes, or at most one day) to avoid both exposure to markets after close and

the need to post collateral overnight. Thus, profits are made by turning over positions

very quickly to make a very small margin per roundtrip transaction (buy followed by a

sell or vice-versa) and repeating it as many times as possible during each trading day.

Despite the substantial changes that markets have undergone in the recent past (see

Cvitanic and Kirilenko (2010)), some strategies used by investors remain the same. When

asked about how to make money in the stock market, an old adage responds “Buy low

and sell high.” Although in principle this sounds like a good strategy, its success relies

on spotting opportunities to buy and sell at the right time. Surprisingly, more than

ever, due to the incredible growth in computing power, a great deal of the activity in

the US and European stock exchanges is based on trying to profit from short-term price

predictions by buying low and selling high.2 The effectiveness of these computerized

short-term strategies, a subset of AT known as HFT, depends on the ability to process

information and send messages to the electronic markets in microseconds; see Cartea and

Penalva (2012). In this thesis, we develop HF trading strategies in a variety of market

settings that profit from having access to a low latency connection with the exchange and

to decide when and how to enter and exit the market over extremely short time intervals.

1.2 Previous Literature

In light of the technological advances highlighted in Section 1.1, there has also been a

flurry of activity in academic research which has addressed a variety of interesting prob-

lems.3 Large-scale macroscopic modeling assumptions in classical mathematical finance

literature (see, e.g., Kou (2002) for the modeling of asset prices as jump diffusions, Heston

(1993) for option pricing with stochastic volatility, and Carr et al. (2003) for stochastic

volatility with Lévy models) give rise to overly simplistic and unrealistic microstructure

dynamics. Due to the high speed nature of these trading algorithms, it has become a

2See, for example, CFTC and SEC (2010) and The Government Office for Science, London (2012).
3See Hasbrouck and Saar (2013) for a study on the effects that low-latency trading has on short-term

volatility, bid/offer spread, and depth of the LOB.



Chapter 1. Introduction 4

neccessity to model tick data directly with careful considerations given to the bid/offer

spread, liquidity (or lack thereof), market impact of trading, and the overall structure of

the LOB.

In response to such shortcomings, there have been several attempts to model this event

data directly. Cont et al. (2010) pose a discrete-space endogenous queuing model4 for

the limit order book that directly models limit order (LO) submissions/cancellations

and market order (MO) arrivals. Roşu (2009) develops a stylistic model that includes

different types of agents (i.e., aggressive vs passive, patient vs impatient, etc). Finally,

Shek (2011) uses trade size and LOB imbalance in conjunction with a marked bivariate

Hawkes process to model MO arrivals. See Madhavan (2000) for a detailed survey on

market microstructure modeling. Advancements on the front of event modeling in tick

data via Hakwes processes are further discussed in Chapter 5.

Although some of the previously mentioned authors have touched on the performance of

particular trading strategies in their respective modeling frameworks, special attention

should be given to papers that address HFT problems directly in a more systematic

framework. One of the first problems to get the attention of academics is that of optimal

liquidation/acquisition where a firm must liquidate (or acquire) a fixed, large number of

units of an asset by some fixed time horizon. Classical quantitative finance assumes fric-

tionless markets and the absence of any price impact as a result of trading – assumptions

that are clearly violated in practice when attempting to acquire a large sum of shares in

a short period of time.

To this end, the pivotal research done in Almgren and Chriss (2000) was one of the first

to directly address the issue of market impact in the context of optimal execution in a

continuous time setting5, and is considered by some to be one of the most influential

papers within the scope of high frequency optimal execution literature. Several risk

metrics were considered in this piece including a modification to VaR (value at risk) that

accounts for liquidity in a way that explicitly considers the tradeoff between volatility

risk and liquidation costs.

There are countless extensions to the work presented in Almgren and Chriss (2000).

Obizhaeva and Wang (2013) considers the combined discrete and continuous trading

problem, and Alfonsi and Fruth (2010) allow for a general LOB shape function. Alfonsi

et al. (2012) extend the relation between reslience functions and arbitrage to include the

weaker notion transaction-triggered price manipulation which results in an agent (who is

responsible for a large acquisition) to trade in quantities far larger than the total lot in

an attempt to reduce overall transaction costs (in contrast to classical arbitrage which

4See Horst and Rothe (2008) for another example of an agent-based queuing model.
5Bertsimas and Lo (1998) were the first authors to solve such a problem in discrete time.
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allows the agent to produce a profit). Modifications to allow the investor to place market

orders and take liquidity from the market can be found in Cartea and Jaimungal (2014)

where the authors use TWAP6 as a benchmark. The inclusion of a price limiter, where the

agent is unwilling to pay above a certain price for any number of shares in her acquisition

strategy, is done in Jaimungal and Kinzebulatov (2014). Guéant et al. (2013) focus

specifically on the dynamics initiated by the agent’s aggressive orders hitting the LOB.

The accelerated share repurchase problem is addressed in an optimal control framework in

Jaimungal et al. (2013). Finally, Almgren (2012) revisits the optimal execution problem

in the presence of varying market liquidity and stochastic volatility.

There has also been a rapidly increasing amount of attention given to HFT problems

where where traders are allowed to both buy and sell assets, rather than trade in only

one direction as in the liquidation problem. That is, if the agent trades using only limit

orders, she behaves somewhat like a traditional market maker. This movement was lead

by Avellaneda and Stoikov (2008) where the authors apply the theory of stochastic opti-

mal control to a utility maximization problem in the context of high frequency trading.

Although the underlying modeling assumptions are simplistic relative to the aforemen-

tioned works, this work was unique in the sense that it directly maximized terminal utility

as a result of trading (in contrast to minimizing the cost to liquidate a given number

of shares). There is no doubt that the results presented Avellaneda and Stoikov (2008)

have greatly motivated the original research presented in Chapter 3 and, ultimately, this

entire thesis.

1.3 Main Results & Outline

This thesis establishes mathematically rigorous frameworks for market microstructure

and constructs optimal HFT strategies within such frameworks, while keeping practical

considerations in mind. The main theoretical tools that will be employed are stochastic

optimal control theory, sequential monte carlo, and particle filtering methods.

While most of the published works referenced in Section 1.2 are focused on either the

theoretical aspects of HFT problems or carry out empirical studies on real data, this thesis

is aimed at providing a seamless bridge between these two focuses. More specifically,

special considerations are given to real-world applications of derived theoretical concepts.

Moreover, an entire chapter is dedicated to providing methods for the application of the

6A Time Weighted Average Price (TWAP) execution strategy refers to buying shares at a constant
rate with respect to time. Similarly, a Volume Weighted Average Price (VWAP; see Guéant and Royer
(2014) and Frei and Westray (2013)) execution strategy refers to buying shares at a rate that is propor-
tional to the current volume being traded at that time.
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involved Generalized Hawkes model that is presented in a market making problem, and a

further chapter is devoted to the application of these results (and the corresponding HFT

strategy) to real data. The author has made every effort to ensure that the mathematical

results presented in this thesis can be applied in real world scenarios.

This thesis contains the first work to solve a stochastic control problem that explicitly

incorporates both adverse selection and a self-exciting point process for modeling event

data in the context of HF market making.7 Full calibration and estimation methodologies

are also provided for the probabilistic model introduced in this piece to ensure a seam-

less bridge between the theory and application. This thesis is also the first to contain

work related to HFT strategies that profit statistical arbitrage opportunities that arise

in economies where the midprice process ventures close to the no-arbitrage boundary.

The structure present in such economic systems is made mathematically precise and the

optimal HFT strategy is derived, analyzed, and tested in a simulation study that includes

adverse selection. An explicit numerical scheme, along with a dimensional reduction, is

provided for solving this problem and we prove that this scheme converges to the cor-

responding viscosity solution as the discretized time and space step sizes become small.

Considerations regarding numerical techniques for all results presented in this thesis are

discussed at length to ensure that all strategies can be implemented in real-time.

This thesis is organized as follows: Chapter 2 introduces the market making problem in

a formal mathematical setting with a simplified example and discusses some stylized fea-

tures of the solution. Chapter 3 poses and solves a stochastic control problem associated

with market making in a single asset in the prescence of adverse selection and market

order clustering. Chapter 4 poses and solves a stochastic control problem associated

with algorithmic trading in multiple assets that are structurally dependent (in some well

defined way). Chapter 5 introduces a further generalization to the process discussed in

Chapter 3, as well as provides efficient parameter calibration algorithms and real-time

estimation of the latent intensity process. Chapter 6 applies some of the previously de-

rived results to real-world data. Finally, Chapter 7 summarizes the conclusions of this

thesis and outlines directions for future work in this field. A number of Appendicies (A

to E) also provide a notation index, extra background material, proofs, some explicit

formulae, and details regarding numerical procedures.

7This work is common to Cartea et al. (2014).



Chapter 2

The Market Making Problem

A pillar of capital markets is the provision of liquidity to investors when they need it.

As compensation for providing immediacy, market makers or liquidity providers earn the

realized spread, which is the market maker’s expected gain from a roundtrip trade (i.e.

a buy followed by a sell or vice-versa). These expected gains depend on, among other

things, the architecture of the limit order book (LOB), and on the ability that market

makers have to hold inventories which gives them the opportunity to build strategic long

or short positions.

In the LOB, limit orders are prioritized first according to price and then according to

time.8 For example, if two sell (buy) limit orders are sent to the exchange, the one with

the lowest (highest) price is placed ahead in the queue. Similarly, orders that improve

the prices for buy or sell will jump ahead of others regardless of how long they have been

resting in the book. Thus, based on the price/time priority rule the LOB stacks on one

side all buy orders (also referred to as bids) and on the other side all sell orders (also

referred to as offers). The difference between the best offer and best bid is known as the

spread, and their mean is referred to as the midquote price. Another dimension of the

book is the quantities on the sell and buy sides for each price tick which give “shape” to

the LOB. See Figure 2.1 for a visual snapshot of the LOB for IBM.

The role of the market maker (MM) is to provide the market with liquidity without the

intention of holding large (either long or short) inventories for an extended period of

time. The market making problem is to devise how one would send limit quotes to the

LOB in an optimal way (subject to some perfomance criterion). Carmona and Webster

8This is the case for most exchanges. Some exchanges use prorata order books, where market orders
are matched with all traders posting at the best bid or offer proportional their posted volume (see, e.g.,
Guilbaud and Pham (2013a)) or other alternatives such as Broker priority in Scandinavian markets.

7
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Figure 2.1: A snapshot of the (NASDAQ) LOB for IBM on June 21, 2011 at 11:45:20.26.

(2012b) proposes an equilibrium model showing how such MMs provide liquidity.

In this chapter, two simplified formulations of the market making problem are presented

as groundwork for more involved settings (as proposed in Chapters 3 and 4). Section

2.1 gives a formal description of the stochastic control problem. Sections 2.2 and 2.3

derive the solution and describe the financial intuition embedded in the form of the

optimal control, respectively. Finally Section 2.4 discusses the effect of allowing the MM

to also execute market orders (MOs). The reader is encouraged to consult Appendix

B.1 for background information on stochastic control theory and the general form of the

corresponding Hamilton-Jacobi-Bellman (HJB) equations.

2.1 Formal Description of the Problem

In this section, a high frequency marking making problem similar to that of Avellaneda

and Stoikov (2008) is described. More specifically, the MM is to select the optimal depth

to post limit quotes on both sides of the LOB with a fixed volume (normalized to one

unit of inventory). If we denote the midprice process by {St}0≤t≤T and the depth of the

MM’s posted limit buy (resp. sell) quote is denoted δ− (resp. δ+), then the limit buy

(sell) quote would be posted at St−δ− (resp. St+δ+). That is, the strategy δ = (δ−, δ+)

describes where the MM posts her quotes relative to the midprice.
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We assume that the midprice (or fundamental price) of the traded asset follows

dSt = σ dWt , (2.1)

where {Wt}0≤t≤T is a P-standard Brownian Motion9 (for some T <∞), and S0 > 0 and

σ > 0 are constants.10 In this chapter, we do not assume any adverse selection effects

(i.e. the drift of St is always zero). The discussion on adverse selection and its connection

to short-term-drift is postponed to Section 3.4.

The only other sources of randomness in this simplified framework are the dynamics

describing incoming market orders, the shape of the limit order book, and the distribution

governing the size of incoming market orders.

Let {M−
t }0≤t≤T and {M+

t }0≤t≤T denote the counting processes associated with number of

market orders up to time t. The sell market orders (that fill limit buy quotes) correspond

to M−
t , and the buy market orders (that fill limit sell quotes) correspond to M+

t . We

assume that M−
t and M+

t are independent poisson processes (and also independent of

Wt) with constant rates λ− and λ+, respectively.

The remaining two sources of randomness (the shape of the limit order book and the

distribution governing the size of incoming market orders) can be combined into one

assumption. The MM really only cares about the rate, per unit of time, that her limit

quote gets filled as a function of the depth δ. We assume that at depth δ±, the MM gets

filled at rate Λ± := λ± exp{−κ±δ±} when δ± ≥ 0 for some positive constants λ± and

κ±.11 Observe the trade off for selecting different depths of δ. When δ is small, then the

arrival rate of filled quotes increases, but the executed price is worse (from the point of

view of the MM). Alternatively, larger values of δ will cause fewer filled limit quotes, but

each filled quote will occur a better price.

Figure 2.2 illustrates the shape of the fill rates at time t describing the rate of arrival of

market orders which fill limit orders placed at price levels St±δ±t . Notice that these rates

peak at zero spread at which point they are equal to the arrival rate of market orders.

In the figure, these rates are asymmetric and decay at differing speeds because we have

assumed different parameters for the buy and sell sides, κ+
t ≡ 2, κ−t ≡ 1, λ+

t ≡ 0.75 and

λ−t ≡ 1.

9The results in this chapter still hold if we instead model St as a compensated jump process, provided
that St meets some integrability conditions.

10Unless otherwise stated, all random variables and stochastic processes in this chapter are defined on
the completed, filtered probability space (Ω,FT ,F,P) with filtration F = {Ft}0≤t≤T and where P is the
real-world probability measure. In this chapter, F is the natural filtration generated by (Wt, Nt), all of
which will be defined later.

11This assumption can also be derived by assuming that the LOB volume is constant and MO volumes
are iid exponential random variables.
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In the more stylized framework discussed in Chapter 3, the rates λ±t and κ±t will all be

stochastic processes to better represent the emperical features found in real data. Real

data will be analysed in Chapter 6 with proper statistical analysis to support this claim.

The last notational component to this setup is to let {N−t }0≤t≤T and {N+
t }0≤t≤T be

counting processes corresponding to the MM’s filled limit buy and sell quotes, respec-

tively. If the MM is not allowed to execute market orders, then the current inventory is

simply qt = N−t −N+
t (since all posted quotes are of unit volume) and the agent’s cash

reserve process is given by

dXt = (St + δ+
t−) dN+

t − (St − δ−t−) dN−t

where δ±t− denotes the left limit of the process δ±t and X0 = 0. Note that it is equivalent

to use St instead of St− in the above equation since the trajectories of St are continuous.

For a given Ft previsible strategy δt, the performance criterion of the MM (for t ∈ [0, T ])

is

Jδ(t, x, s, q) = EP
(t,x,s,q)

Xδ
T + qδT

(
ST − γ qδT

)
− φ

T∫
t

(
qδs
)2
ds

 (2.2)

where φ > 0 and γ > 0 are constants, and the processes Xt and qt depend on the

control δt. Going forward, this explicit dependence will often be supressed, along with

the relevant probability measure P. Finally, the subscript (t, x, s, q) denotes that we are

conditioning on the event (t,Xt, St, qt) = (t, x, s, q).12

The parameter φ is an inventory management parameter, and its value depends on the

12More generally, we are conditioning on Ft. However, we can simply condition on the relevant states
at time t since all processes are Markovian wrt (F,P).
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MM’s inventory-aversion13 level. The last term in (2.2) is a penalty term that is asso-

ciated with the MM holding non-zero inventory. The performance criterion is then the

penalized market value of terminal holdings, where the penalty is related to how much

inventory was held during the trading period. Some works, as in Avellaneda and Stoikov

(2008), have perfomance criterion equal to expected utility (where the exponential utility

function is the primary focus).

Although it is possible to have the integral of any non-negative convex penalty function,

analytic tractability is immediately lost in such generality. The choice of squared inven-

tory can stem for many different (and independent) sources. The analysis in Chapter

4 shows that such a penalty, even in a much more general framework, is equal to the

intra-trade quadratic variation of the MM’s market value process. On the other hand,

Cartea et al. (2013) show that this exact penalty stems from ambiguity aversion in the

drift of the midprice process.

The constant γ is a market impact liquidation penalty for holding non-zero inventory at

the terminal time T . Alternatively, this terminal penalty can be seen as stemming from

the agent’s aversion to holding inventory overnight. The explicit form of γq2 is due to the

simplified assumption that the limit order book is flat. To liquidate a positive inventory

of q, the average price per share received decreases linearly in q and hence, the cost is

quadratic in q. The case when covering a short position of q is analogous.

The value function is then given by

Φ(t, x, s, q) = sup
δ
Jδ(t, x, s, q) (2.3)

where the supremum is taken over all Ft previsible functions δ : [0, T ] × Ω −→ R2, and

Jδ is defined in (2.2).

The goal of this problem is to determine the optimal strategy δ∗t that satisfies Φ = Jδ
∗
.

The value function Φ is somewhat less interesting than the optimal strategy itself, even

though its structure determines the optimal strategy.

13Some authors refer to this as risk-aversion. In this thesis, we emphasize that it is holding a large
inventory that the high frequency trader is averse to.
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2.2 The Solution

To go from the definition of the value function to the HJB equation, we will employ a

dynamic programming argument. To this end, consider a strategy δ̂t of the form

δ̂u =

{
δu u ∈ [t, t+ h]

δ∗u u ∈ (t+ h, T ]
(2.4)

where h > 0, δt is an arbitrary control, and δ∗t is the optimal control. We proceed to

evaluate the performance criterion given by the strategy δ̂t.

J δ̂(t, x, s, q) = E(t,x,s,q)

X δ̂
T + qδ̂T

(
ST − γ qδ̂T

)
− φ

T∫
t

(
qδ̂s

)2

ds


= E(t,x,s,q)

X δ̂
T + qδ̂T

(
ST − γ qδ̂T

)
− φ

T∫
t+h

(
qδ
∗

s

)2
ds− φ

t+h∫
t

(
qδs
)2
ds


= E(t,·)

E(t+h,·)

X δ̂
T + qδ̂T

(
ST − γ qδ̂T

)
− φ

T∫
t+h

(
qδ
∗

s

)2
ds

− φ
t+h∫
t

(
qδs
)2
ds


= E(t,·)

Φ
(
t+ h,Xδ

t+h, S
δ
t+h, q

δ
t+h

)
− φ

t+h∫
t

(
qδs
)2
ds


= Φ(t, x, s, q) + E(t,·)

 t+h∫
t

{
(∂t + L) Φ

(
u,Xδ

u, S
δ
u, q

δ
u

)
du− φ

(
qδu
)2
du
}

where the last equality is by Dynkin’s Formula and the infinitesimal generator is given

by

LΦ(t, x, s, q) =
1

2
σ2∂ssΦ(t, x, s, q)+λ−e−κ

−δ−
[
Φ(t, x− s+ δ−, s, q + 1)− Φ(t, x, s, q)

]
+λ+e−κ

+δ+
[
Φ(t, x+ s+ δ+, s, q − 1)− Φ(t, x, s, q)

]
.

(2.5)

Taking supremum over all admissible controls δt on the interval [t, t+h] and dividing by
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h yields

sup
δ

E(t,·)

1

h

t+h∫
t

{
(∂t + L) Φ

(
u,Xδ

u, S
δ
u, q

δ
u

)
du− φ

(
qδu
)2
}
du

 = 0 . (2.6)

By taking the limit h ↓ 0, the value function Φ then satisfies the following HJB equation

with terminal condition
∂tΦ− φq2 + 1

2
∂ssΦ + λ− sup

δ−

{
e−κ

−δ− [Φ(t, x− s+ δ−, s, q + 1)− Φ]
}

+λ+ sup
δ+

{
e−κ

+δ+ [Φ(t, x+ s+ δ+, s, q − 1)− Φ]
}

= 0

Φ(T, ·) = x+ q(s− γq)

(2.7)

where the “ · ” notation in Φ(T, ·) is used to suppress arguments and appears throughout

this thesis.

We can apply the ansatz Φ = x+ qs+ g(t, q) to reduce (2.7) to the much simpler form:
∂tg(t, q)− φq2 + λ− sup

δ−

{
e−κ

−δ− [δ− + g(t, q + 1)− g(t, q)]
}

+λ+ sup
δ+

{
e−κ

+δ+ [δ+ + g(t, q − 1)− g(t, q)]
}

= 0

g(T, q) = −γq2

(2.8)

The optimal strategy can be found in feedback control form (i.e. as a function of the

value function Φ or, equivalently, g) by finding the maximizer of the supremum terms in

(2.8). If we differentiate in δ± and set the resulting expression equal to 0, we find the

global maximum14 is obtained at

δ±,∗t =
1

κ±
− [g(t, q ∓ 1)− g] . (2.9)

If we substitute this optimal control back into (2.8), the following non-linear equation

for g is obtained:

∂tg − φq2 +
λ−

eκ−
eκ
−[g(t,q+1)−g] +

λ+

eκ+
eκ

+[g(t,q−1)−g] = 0 (2.10)

14One would also need to check second order and boundary/limiting conditions, but these details are
omitted.
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At this point, there are many methods for solving (2.10). We briefly outline three of

them below.

1. Perform an asymptotic expansion in φ. This method is similar to the solution to

the problem in Chapter 3.

2. Impose upper and lower bound constraints on q, and then proceed to solve (2.10)

numerically using an explicit scheme backwards in time. This method is similar to

the solution to the problem in Chapter 4.

3. Impose upper and lower bound constraints on q, and then attempt to find an ex-

act solution to the resulting finite system of ordinary differential equations (ODEs).

This method is similar to the solutions to the problems posed in Cartea and Jaimun-

gal (2013b)15 and Guéant et al. (2013)16.

The numerical solution is obtained via an explicit numerical scheme, as described above

in item 2. Since the purpose of this chapter is to explore the setup of the market making

problem and the qualitative features of the optimal control, the explicit details regarding

this numerical solution are omitted.

2.3 Features of the Optimal Strategy

We further impose that the admissible controls in (2.3) be restricted to only non-negative

controls (that is, R2
+-valued functions). This additional constraint is a financial one: We

do not want the MM to submit limit quotes that cross up the LOB17 (as these are akin

to market orders which will be addressed in Section 2.4).

Figure 2.3 depicts the behaviour of the optimal posting depth for buy limit orders (the

analysis for sell limit orders is analogous due to the model’s inherent symmetry). Notice

for a fixed inventory-aversion level φ, the MM posts deeper into the LOB when she is

holding a large positive inventory. Likewise, the more short she is, the closer the bid

quote will be to the midprice as she is more eager to acquire the asset and willing to

do so for less spread. This induces her inventory to mean-revert to zero, despite that

requirement not being part of the initial setup of the problem.

15The choice of ansatz for Φ is slightly different.
16The objective function in this paper maximizes expected utility instead of expected penalized profits.
17A LOB is deemed to be crossed if there exists some subset of quotes that can be executed against

each other. Typical cases are concerned with subsets of size two, but some brokerages will search for
crosses that involve more than two quotes.
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(b) φ = 5

Figure 2.3: Optimal posting depth of limit buy quotes δ−t for various inventory levels q
versus time with terminal investment horizon T = 120 and maximum inventory size, for
the purpose of numerically solving (2.10), of 40 units (long or short).

When we compare the behaviour of two MMs with different inventory-aversion levels

(φ = 1 versus φ = 5), we see that the distinction in behaviour for different inventory

levels becomes much more pronounced for the MM that is more inventory-averse (as

depicted in Figure 2.3(b)). This is due to the fact that the more inventory-averse the

MM is, the stronger the desire to get back to a flat position (q = 0). Hence, when

this MM is long, far more compensation is required to accumulate yet another unit of

the asset, so δ−t is large (i.e. the bid quote is posted deep in the LOB). Similarly, this

MM is even more desperate to cover short positions, so δ−t quickly becomes small when

inventory begins to accumulate. Different rates of mean reversion of the MM’s inventory

will be investigated in Section 3.5.3.

Finally, the behaviour we observe in δ−t when t approaches T = 120 is dictated by the size

of the market impact parameter γ. As demonstrated in Cartea and Jaimungal (2013b),

when γ = 0, these curves (one for each q) converge to a point as the MM knows that

she can liquidate at the midprice at time T , so she attempts to accumulate more of the

asset to collect the spread. When γ is large, the curves will diverge from each other as

the cost of terminal market impact is extremely high, so the trader desperately tries to

cover any short position while posting deep bid quotes to be sure to not accumulate more

inventory. This effect of terminal market impact detracts from the scope of this chapter,

so we refer the reader to Cartea and Jaimungal (2013b) for more details.

A simulation study is performed on 5 minutes of trading (T = 300 seconds) for 2,500

total simulations. The other model parameters are given in Table 2.1. See Figure 2.4(a)

for the effect that the inventory-aversion level has on the terminal profit and loss (PnL)
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Parameter Value

σ 0.01
S0 100
γ 0.001
λ− 1.2
λ+ 1.0
κ− 50
κ+ 55
T 300

Table 2.1: Model parameters used in the simulation study for the market making problem.

(a) Distribution of PnL (b) Distribution of the terminal inventory |qT |

Figure 2.4: Distributional properties associated with the optimal strategy for various
inventory-aversion levels, φ.

of the MM. Observe that the more inventory-averse the MM is, the lower her mean PnL

is. However, the more inventory-averse MM also faces a PnL distribution with smaller

variance. This is directly analogous to the classical risk-return trade-off in portfolio

theory.

Furthermore, Figure 2.4(b) shows that the distribution of absolute terminal inventory,

|qT |, becomes closer to zero as the MM becomes more inventory-averse. This is in line

with the financial intuition that inventory-averse traders prefer to hold smaller inventories

than less inventory-averse ones.
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2.4 The Inclusion of Market Orders

In this section, we modify the market making problem posed in Section 2.1 to allow the

MM to be aggressive and execute market orders.18 We wish to investigate what effect, if

any, this has on the trading behaviour of MM and how it affects her PnL. The agent’s

optimization problem now consists of a continuous control and an impulse control. More

specifically, it consists of δ = (δ−, δ+) and the double sequence of stopping times and

impulses (τ , ς) = (τ1 ≤ τ2 ≤ . . . ; ς1, ς2, . . . ) at which the agent executes MOs, where τk
is an Ft stopping time (for all k), ςk = 1 if the kth market order is a buy, and ςk = −1 if

it is a sell.

Most electronic exchanges charge a fee for taking liquidity from the market, hence, when

the agent executes a market order, here, we will charge her an additional transaction

fee. For the purposes of illustration, this fee is taken to be ε = 0.01 for this section only.

This fee can also be interpreted as the half-spread in a microstructure model that has a

bid-offer spread.

We will denote the agent’s buy and sell MO submissions by the counting processes

{M̃+
t }0≤t≤T and {M̃−

t }0≤t≤T , respectively. The MM’s cash process then satisfies the

SDE

dXt = (St + δ+
t−) dN+

t − (St − δ−t−) dN−t + (St − ε) dM̃−
t − (St + ε) dM̃+

t

and the inventory process qt is given by qt = N−t + M̃+
t −N+

t − M̃−
t .

Notice that the supremum in Equation (2.3) will now be taken over (δ, τ , ς) to reflect

the fact that this is a combined stochastic control and impulse control problem. Similar

to Section 2.2, we derive the HJB quasi-variational inequality (QVI) via a dynamic

programming argument.

To this end, fix t ∈ [0, T ) and define the impulse control τ̂ = (τ1 ≤ τ ∗2 ≤ τ ∗3 ≤ . . . ) where

τ1 ∈ [t, T ] is an arbitrary stopping time and τ ∗2 , τ
∗
3 , . . . are optimal stopping times. We

then define the continuous control δ̂ as

δ̂u =

{
δu u ∈ [t, τ1 ∧ (t+ h)]

δ∗u o.w.
(2.11)

where h > 0, δt is an arbitrary control, and δ∗t is the optimal control. Following the same

18See Horst and Naujokat (2014) for the inclusion of market orders when trading in illiquid markets.
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logic as in Section 2.2, we arrive at the analogue to Equation (2.6):

sup
δ,τ ,ς

E(t,·)

1

h

τ1∧(t+h)∫
t

{
(∂t + L) Φ (u, ·) du− φ (qu)

2 +MΦ (u, ·)
}
du

 = 0 (2.12)

whereM is the impulse operator responsible for the agent’s submission of market orders

and is given by

MΦ(u, x, s, q) =
∑
i: τi=u

sup
ςi

[Φ(u, x− ςi · s− ε, s, q + ςi)− Φ(u, x, s, q)] ,

and L is defined in (2.5). Recall that ςi = 1 when the ith market order is a buy and

ςi = −1 when it is a sell.

When taking h ↓ 0 in Equation (2.12), we consider the two cases: τ1 = t and τ1 > t.

Note that the event {τ1 = t} is Ft measurable and therefore we know at time t whether

τ1 = t or τ1 > t. If τ > t, then the impulse term in (2.12) is zero (by definition) and we

obtain something similar to Equation (2.6). If τ1 = t, then the integral in (2.12) is zero

and only the impulse term remains. Because we are taking supremum over all continuous

controls and impulses, we see that the maximum of these terms must be zero. Analogous

to Equation (B.4), the resulting HJB equation that the value function Φ satisfies will

now be a QVI and is given by

max

[
∂tΦ− φq2 + 1

2
∂ssΦ + λ− sup

δ−

{
e−κ

−δ− [Φ(t, x− s+ δ−, s, q + 1)− Φ]
}

+λ+ sup
δ+

{
e−κ

+δ+ [Φ(t, x+ s+ δ+, s, q − 1)− Φ]
}

;

Φ(t, x− s− ε, s, q + 1)− Φ ;

Φ(t, x+ s− ε, s, q − 1)− Φ

]
= 0

Φ(T, ·) = x+ q(s− γq)
(2.13)

Observe the addition of the second and third terms in the maximum in (2.13). The

second term corresponds to the submission of a market buy order and the cash process

decreases by s+ ε. Similarly, the third term corresponds to a market sell for the price of

s− ε.

One can still apply the simplifying ansatz Φ = x+ qs+ g(t, q). Interestingly enough, the

optimal control in feedback control form, δ, in the continuation region is still given by

(2.9). The function g(t, q) in this case is clearly different though. Due to the HJBQVI

in (2.13) being the maximum of three components, it appears that we have lost analytic
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Figure 2.5: Performance of strategy for various φ, ranging from 0.3 to 200, with and
without market orders.

tractibility of g (even in an asymptotic regime). Of course, one can resort to an explicit

numerical scheme and solve (2.13) backwards in time.

As carried out in Section 2.3, here we perform a simulation study and investigate the

performance of various inventory-aversion levels φ. Figure 2.5 shows the efficient frontiers

in both the limit order (LO) only and LO + MO cases. The range of φ is from 0.3 to 200

and recall that the other model parameters are given in Table 2.1. The least inventory-

averse trader obtains the mean PnL in the upper right corner of these plots, but also has

both the highest PnL variance and mean inventory risk19. As the MM becomes more

inventory-averse (increases φ), the performance of the strategy moves towards the points

in the bottom left corner. These strategies have less risk, but yield less overall profits.

It is clear that the optimal strategy without MOs is an admissible strategy in the case

when MOs are allowed. Hence, the value function that allows MOs must always dominate

the value function that allows LOs only. This is also evident from the efficient frontiers

in Figure 2.5 and demonstrates the value of market orders to the market maker.

The number of market orders the MM executes will depend on how inventory-averse she is

(i.e. how willing she is to hold inventory instead of paying a fee to take liquidity from the

market to flatten the position prior to time T ). Figure 2.6 shows the distribution of the

number of executed market orders for various φ. Observe that the more inventory-averse

the MM is, the more she executes market orders. As the inventory penalty parameter φ

19Inventory risk is defined as: σ2
T∫
0

q2
sds, and represents how much risk was taken on over the lifetime

of the strategy. This concept, and its multiple asset variant, will be elaborated on in Section 4.4.1.
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(b) Market Sell Orders

Figure 2.6: Distribution of the number of executed marker orders for various φ.

goes to zero (i.e. the MM becomes risk neutral), she chooses to never execute MOs since

she does not mind holding large inventories. Hence, the strategy that includes MOs is

the same as the LO only strategy and this corresponds to the upper right region of the

efficient frontiers of Figure 2.5. However, for inventory-averse MMs, there is certainly

value in the ability to execute MOs.

The larger number of sell MOs executed (compared to buy MOs) is due to the slight

asymmetry in the the chosen parameters in Table 2.1. λ− > λ+ signifies that there are

more incoming market sell orders, making fills on the bid side occur more often relative

to fills on the offer side. κ− < κ+ signifies that there are more agents that have limit sell

quotes posted, meaning that the LOB is heavier on the limit sell side, making it harder

to get filled there relative to the limit buy side. Both of these effects combined cause the

MM to execute more market sell orders.

Figure 2.7 shows the maximum (absolute) inventory held by the MM during the lifetime

of the strategy. Again, notice that the ability to execute market orders helps the MM

directly control how large her inventory gets. When φ = 1, the MM makes use of MOs

to prevent her inventory from becoming larger than q = 7 (or smaller than q = −7).

Increasing the inventory aversion parameter to φ = 3, the MM makes heavier use of MOs

to prevent her inventory from becoming larger than q = 4. Whereas in the LO only

case, she must post her limit buy quote deeper in the LOB and demands more spread

in exchange for accumulating another unit of the asset. This causes her to be filled less

often and has a direct impact on PnL.

The model and results presented in this chapter have now set the stage for the more

complex algorithmic trading problems in the next two chapters: Chapter 3 introduces
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(a) LO only (b) LO + MO

Figure 2.7: Distribution of max
0≤t≤T

{|qt|} for various φ.

stochastic MO arrival rate processes λ±t and stochastic midprice αt to incorporate adverse

selection into our microstructure model, while Chapter 4 extends this setup to multiple

assets where an investor seeks to both make markets and profit from short term statistical

arbitrage opportunites.



Chapter 3

Market Making in a Single Asset

3.1 Introduction

There is little evidence on the source of high frequency (HF) market making (MM) profits,

but the picture that is emerging is that price anticipation and short-term price deviations

from the fundamental value of the asset are important drivers of profits. On the other

hand, from the classical microstructure literature on adverse selection (see, e.g., O’Hara

(1998)), we also know that strategies that do not include a buffer in their LOs to cover

adverse selection costs or that strategically post deeper in the book to avoid being picked

off, may see their accumulated profits dwindle as a consequence of trading with other

market participants who possess private or better information. In the long term, high

frequency traders (HFTs) who are not able to incorporate short-term price predictability

in their optimal HF market making strategies, as well as account for adverse selection

costs, are very likely to be driven out of the market.

The goal of this chapter is to develop a particular dynamic HF trading strategy based on

optimal postings and cancellations of limit orders to maximize expected terminal wealth

over a fixed horizon T while penalizing inventories, which will be made mathematically

precise in Section 3.5.1. The HFT we characterize here can be thought of as an ultrafast

market maker where the trading horizon T is at most one trading day, all her limit orders

are cancelled a short time later if not filled, and inventories are optimally managed (to

maximize expected penalized terminal wealth) and drawn to zero by T .20 Early work on

20HFTs closely monitor their exposure to inventories for many reasons. For example, HFTs’ own risk
controls or regulation do not allow them to build large (long or short) positions; the HFT is capital
constrained and needs to post collateral against her inventory position. Moreover, we remark that there
is no consensus on characterizing HFTs as market makers because some stakeholders and regulatory

22
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optimal postings by a securities dealer is that of Ho and Stoll (1981), and more recently

Avellaneda and Stoikov (2008) studied the optimal HF submission strategies of bid and

ask limit orders.

Intuitively, our dynamic high frequency trading (HFT) strategy maximizes the expected

profits resulting from roundtrip trades by specifying how deep on the sell and buy sides

the limit orders are placed in the limit order book (LOB). The HFT strategy is based on

predictable short-term price deviations and managing adverse selection risks that result

from trading with counterparties that may possess private or better information. Clearly,

the closer the limit orders are to the best bid and best offer, the higher the probability

of being executed, but the expected profits from a roundtrip are also lower, and adverse

selection costs are higher.

Accumulated inventories play a key role throughout the entire strategy we develop. Opti-

mal postings control for inventory risks by sending quotes to the LOB which induce mean

reversion of inventories to an optimal level and by including a state dependent buffer to

cover or avoid expected adverse selection costs, as will be discussed in Sections 3.5.2,

3.5.3, and 3.6. For example, if the probability of the next market order being a buy or

sell is the same, and inventories are positive, then the limit sell orders are posted closer

to the best ask, and the buy orders are posted further away from the best bid so that

the probability of the offer being lifted is higher than the bid being hit. Furthermore, as

the dynamic trading strategy approaches the terminal time T , orders are posted nearer

to the midquote to induce mean-reversion to zero in inventories, which avoids having to

post collateral overnight and bearing inventory risks until the market opens the following

day. Similarly, if the HF trading algorithm detects that limit orders on one side of the

LOB are more likely to be adversely selected, then these limit orders are posted deeper

into the book in anticipation of the expected adverse selection costs. An increase in

adverse selection risk could be heralded by market orders becoming more one-sided as a

consequence of the activity of traders acting on superior or private information who are

sending one-directional market orders.

As part of the model we develop here, we propose a reduced-form model for the intensity

of the arrival of market sell and buy orders. The novelty we introduce is to assume

that market orders arrive in two types. The first type of orders are influential orders

which excite the market and induce other traders to increase the number of market

orders they submit. For instance, the arrival of an influential market sell order increases

the probability of observing another market sell order over the next time step and also

increases (to a lesser extent) the probability of a market buy order to arrive over the

next time step. On the other hand, when non-influential orders arrive, the intensity of

authorities point out that their holding periods are too short to consider them as such; see, for example,
European Commission (2010).
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the arrival of market orders does not change. This reflects the existence of trades that

the rest of the market perceives as not conveying any information that would alter their

willingness to submit market orders. In our model, we also incorporate the arrival of

public news as a state variable that increases the intensity of market orders. In this way,

our model for the arrival of market orders is able to capture trade clustering which can be

one-sided or two-sided and allow for the activity of trading to show the positive feedback

that algorithmic trades seem to have brought to the market environment. Multivariate

Hawkes processes have recently been used in the financial econometrics literature to model

clustering in trade arrival and changes in the LOB; see, e.g., Large (2007), Bowsher (2007)

and Toke (2011). However, this work is the first to incorporate such effects into optimal

control problems related to algorithmic trading (AT).

In our model, the arrival of trades also affects the midprice and the LOB. The arrival

of market orders is generally regarded as an informative process because it may convey

information about subsequent price moves and adverse selection risks.21 Here we assume

that the dynamics of the midprice of the asset are affected by short-term imbalances in

the number of influential market sell and buy orders; in particular, these imbalances have

a temporary effect on the drift of the midprice. The arrival of good and bad news have

a similar effect.

Moreover, in our model the arrival of influential orders has a transitory effect on the

shape of both sides of the LOB. More specifically, since some market makers anticipate

changes in the intensity of both the sell and buy market orders, the shape of the buy

and sell sides of the book will also undergo a temporary change due to market makers

repositioning their limit orders in anticipation of the increased expected market activity

and adverse selection risk.

We test our model using simulations where we assume different types of HFTs who are

mainly characterized by the quality of the information that they are able to process

and incorporate into their optimal postings. We show that those HFTs who incorporate

predictions of short-term price deviations in their strategy will deliver positive expected

profits. At the other extreme, we have the HFTs who are driven out of the market because

their limit orders are picked off by better informed traders (see Carmona and Webster

(2012a) for an order book model that distinguishes between informed and uninformed

traders) and cannot profit from directional strategies which are also based on short-lived

predictable trends. We also show that in between these two cases, those HFTs who

cannot execute profitable directional strategies (and are systematically being picked off)

21For instance, periods where the number of market buy orders is much higher than the number
of market sell orders could be regarded as times where informed traders have a private signal and are
adversely selecting market makers who are unaware that they are providing liquidity at a loss; see Easley
and O’Hara (1992).
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can stay in business if they exert tight controls on their inventories. In our model, these

controls imply a higher penalty on their inventory position which pushes the optimal

limit orders further away from the midprice so the chances of being picked off by other

traders are considerably reduced.

In Section 6.3, we also test these strategies against real data, where similar results are

found. This analysis is postponed to Chapter 6 (a chapter dedicated to applications to

real data) as it ties in nicely with applications of the theory from Chapter 5 as well.

3.2 Arrival of Market Orders and Price Dynamics

The HF trading strategy we develop here is designed to profit from the realized spread

where we allow the HFT to build inventories. To this end, before we formalize the

HFT’s optimization problem, we require a number of building blocks to capture the

most important features of the market dynamics.22 Since the HFT maximizes expected

terminal wealth over a finite horizon T , while being penalized for holding large inventories,

and she is continuously repositioning buy and sell limit orders (LOs), the success of the

strategy depends on optimally picking the “best places” on the bid and offer side of the

LOB which requires us to model (i) the dynamics of the fundamental value of the traded

stock, (ii) the arrival of market buy and sell orders, and (iii) how market orders (MOs)

cross the resting orders in the LOB. In this section we focus on (i) and (ii), in Section

3.3 we discuss (iii) and after that we present the formal optimal control problem that the

HFT solves.

3.2.1 Price Dynamics

We assume that the midprice (or fundamental price) of the traded asset follows

dSt = (υ + αt) dt+ σ dWt , (3.1)

where {Wt}0≤t≤T is a P-standard Brownian Motion, and S0 > 0 and σ > 0 are con-

stants.23 The drift of the midprice is given by a long-term component υ and by αt which

22Although we focus on an HF trading market making algorithm, the framework we develop here can
be adapted for other types of AT strategies.

23Unless otherwise stated, all random variables and stochastic processes in this chapter are defined
on the completed, filtered probability space (Ω,FT ,F,P) with filtration F = {Ft}0≤t≤T and where P is
the real-world probability measure. What generates the filtration will be defined precisely in Section
3.5. Simply put, it will be generated by the Brownian motions Wt and Bt (introduced later), counting
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is a predictable zero-mean reverting component that represents stochastic short-term de-

viations from υ. Since we are interested in HF trading, our predictors are based on order

flow information where we allow for feedback between market order events and short-

term-alpha. In the rest of this chapter, we assume that υ = 0 because the HF strategies

we develop are for very short-term intervals.

Section 3.4 gives details of the dynamics of the process αt. This element of the model

plays a key role in the determination of the HF strategies we develop because it captures

different features that we observe in the dynamics of the midprice. For instance, it

captures the price impact that some orders have on the midprice as a result of: the

arrival of news, a burst of activity on one or both sides of the market, orders that eat

into the LOB, etc. Furthermore, we also know that a critical component of HF trading is

the ability that HFTs have to predict short-term deviations in prices so that they make

markets by taking advantage of directional strategies based on short-term predictions

(i.e., they are able to predict short-term-alpha) while at the same time allowing them to

reposition stale quotes or submit new quotes to avoid being picked off by other market

participants trading on short-term-alpha, i.e., avoid being adversely selected.

3.2.2 Self-Exciting Incoming Market Order Dynamics

Markets tend to follow an intraday pattern. Usually after the market opens and before the

market closes, there is more activity than during the rest of the day. Another prominent

feature is the clustering of MO arrivals. Figure 3.1 shows the historical intensity of trade

arrival, buy and sell, for IBM over a two minute period (starting at 3.30pm, February 1

2008). The historical intensities are calculated by counting the number of buy and sell

market orders over the last 1 second. The fitted ρ = 1 intensities are computed using our

model (see Equation (3.2)) under the specific assumption that all trades are influential;

see Appendix E.1 for more details. Although the discussion regarding the fit of the full

model will be deferred to Section 5.1 (where the figure is repeated), we would like to

bring the reader’s attention to the improvement in fit over the ρ = 1 case.

From these figures, we observe that market orders may arrive in clusters and that there

are times when the markets are mostly one-sided (for instance, there are periods where

trading is more active on the buy side than on the sell side, and vice-versa) and that these

bursts of activity die out rather quickly and revert to just a couple events per second.

The statistical justification for these claims are outlined in detail in Section 6.1.

processes corresponding to buy/sell market and filled limit orders, news events, the indicator of whether
a trade is influential or not, and the midprice’s drift process.
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(a) Arrival of IBM market buy orders
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(b) Arrival of IBM market sell orders

Figure 3.1: IBM market orders. market orders. Historical running intensity versus
smoothed fitted intensity using a 1 second sliding window for IBM for a 2 minute pe-
riod, between 3:30pm and 3:32pm, February 1, 2008.

Why are there bursts of activity on the buy and sell sides? It is difficult to link all these

short-lived increases in the levels of activity to the arrival of news. One could argue that

trading algorithms, including HF, are also responsible for the sudden changes in the pace

of the market activity, including bursts of activity in the LOB, and most of the time

these algorithms act on information which is difficult to link to public news. Thus, here

we take the view that some market orders generate more trading activity in addition to

the usual effect of news increasing the intensity of market orders.

In our model, market orders arrive in two types. The first are influential orders which

excite the state of the market and induce other traders to increase their trading activity.

As discussed in Section 3.4, these MOs can also be interpreted as originating from an

agent with superior information, highlighting the the presence of asymmetric information

in the market.24 We denote the total number of arrivals of influential sell/buy market

orders up to (and including) time t by the processes {M−
t , M

+

t }0≤t≤T . The second type

of orders are non-influential orders. These are viewed as arising from players who do not

excite the state of the market. We denote the total number of arrivals of non-influential

sell/buy market orders up to (and including) time t by the processes {M̃−
t , M̃

+
t }0≤t≤T .

Note that the type indicator of an order is not observable. Rather, all one can observe

is whether the market became more active after that trade. Therefore we assume that,

conditional on the arrival of a market order, the probability that the trade is influential

is constant and denoted by ρ ∈ [0, 1].

24Although this interpretation contradicts the Efficient Market Hypothesis, adverse selection is such
a prominent feature in the market that we are willing to dismiss this hypothesis.
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Clearly, public bad (good) news increases the sell (buy) activity, but what is not clear is

whether market participants always interpret news in the same way. If there is disagree-

ment in how to interpret news or news is ambiguous, then both sides of the market will

show an increase in the intensity of buy and sell market orders.25

Thus, we model the intensity of sell, {λ−t }0≤t≤T , and buy, {λ+
t }0≤t≤T , market orders by

assuming that they solve the coupled system of stochastic differential equations (SDEs).

Assumption 3.2.1. The rate of arrival of market sell/buy orders λt = (λ−t , λ
+
t ) solves

the coupled system of SDEs dλ−t = β(θ − λ−t )dt+ η dM
−
t + ν dM

+

t + η̃ dZ−t + ν̃ dZ+
t ,

dλ+
t = β(θ − λ+

t )dt+ η dM
+

t + ν dM
−
t + η̃ dZ+

t + ν̃ dZ−t ,

(3.2)

where {Z±t }0≤t≤T are Poisson processes (independent of each other and all other pro-

cesses), with constant activity rate µ± ≥ 0, which represent the total amount of good

and bad news that have arrived until time t, and recall that M
+

t and M
−
t are the total

number of influential buy and sell orders up until time t. Moreover, β, θ, η, ν, η̃, ν̃ are

non-negative constants satisfying the constraints β > ρ(η + ν) and θ > 0.

Market orders are self-exciting because their arrival rates λ± jump upon the arrival of

influential orders (note that the arrival of non-influential orders do not affect λ±). If

the influential market order was a buy (so that a sell limit order was lifted), the jump

activity on the buy side increases by η while the jump activity on the sell side increases

by ν. On the other hand, if the influential market order was a sell (so that a buy limit

order was hit), the jump activity on the sell side increases by η while the jump activity

on the buy side increases by ν. Typically one would expect ν < η so that jumps on the

opposite side of the LOB are smaller than jumps on the same side (this bears out in the

statistical calibration as well as in the moving window activities reported in Figure 3.1).

News also affects market activity, but does not cause self-excitations. In our model we

include cross effects to capture the fact that market participants do not always interpret

news in the same way, for example good news increases the intensity of buy market orders

by ν̃ but also affects the intensity of market sell orders by η̃.

Trading intensity is mean reverting. Jumps in activity decay back to its long run level

of θ at an exponential rate β. Figure 3.2 illustrates a sample path during which no news

arrives, but some of the market orders that arrive are influential and induce jumps in

the activity level. The lower bound condition on β is required for the activity rate to be

25There are automated news feeds designed for AT that already classify the news as good, bad, and
neutral.
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Figure 3.2: Sample path of market order activity rates. When influential trades arrive, the
activity of both buy and sell orders increase but by differing amounts. Circles indicate the
arrival of an influential market order, while squares indicate the arrival of non-influential
trades.

ergodic. To see this, define the mean future activity rate m±t (u) = E[λ±u |Ft] for u ≥ t.

Note that λ±t is measurable with respect to Ft. For the processes λ±t to be ergodic, m±t (u)

must remain bounded as a function of u, for each t, and the following lemma provides a

justification for the constraint.

Lemma 3.2.2. Lower Bound on Mean-Reversion Rate. The mean future rate

m±t (u) remains bounded for all u ≥ t if and only if β > ρ(η + ν). Furthermore,

lim
u→∞

m±t (u) = A−1ζ , where A =

(
β − ηρ −νρ
−νρ β − ηρ

)
and ζ =

(
βθ + η̃µ− + ν̃µ+

βθ + ν̃µ− + η̃µ+

)
.

Proof. See Appendix C.1.

The intuition for the constraint is that when a market order arrives the activity will

jump either by η or by ν and this occurs with probability ρ. Further, since both sell and

buy influential orders induce self-excitations, the decay rate β must be strong enough to

compensate for both jumps to pull the process toward its long-run level of θ.

3.3 Limit Quote Arrival Dynamics and Fill Rates

The LOB can take on a variety of shapes, and it changes dynamically throughout the

day, see Roşu (2009) and Cont et al. (2010). Market orders eat into the LOB until all
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the volume specified in the order is filled. Limit orders in the tails of the LOB are far

less likely to be filled than those within a couple of ticks from the midprice St. Another

important feature of the LOB dynamics is how quickly the book recovers from a large

market order; i.e. the quoted spread returns to previous values. This is known as the

resilience of the LOB.

Therefore, the decision on where to post limit buy and sell orders depends on a number of

characteristics of the LOB and on market orders. Some of the relevant features are shape

of the LOB, resiliency of the LOB, and how the LOB changes in between the arrival of

market orders. These features, combined with the size and rate of the incoming market

orders, determine the fill rates of the limit orders. The fill rate is the rate of execution of

a limit order. Intuitively, a high (low) fill rate indicates that a limit order is more (less)

likely to be filled by a market order.

Here we model the fill rate facing the HFT in a general framework where we allow the

depth and shape of the book to fluctuate. The fill rate depends on where the HFT

posts the limit buy and sell orders, that is at St − δ−t and St + δ+
t respectively, where δ±t

denotes how far from the midprice the orders are posted at time t. Note that the agent

continuously adjusts their posting relative to the midprice, hence, it is not possible for

the midprice to move through the agent’s posts. Rather, fills occur when MOs arrive and

reach the level at which the agent is posted. This is in line with how a number of other

authors have modeled optimal postings and fill probabilities (FPs); see Ho and Stoll

(1981), Avellaneda and Stoikov (2008), Bayraktar and Ludkovski (2012), Cartea and

Jaimungal (2013b), and Guéant et al. (2013). This approach can be viewed as a reduced

form one, in contrast to models which focus on modeling the dynamics of each level of

the LOB, together with MO arrivals (see, e.g., Roşu (2009) and Cont et al. (2010)). In

our reduced form approach, in contrast to previous works, we allow the fill probability

itself to be stochastic and react to MOs.

Assumption 3.3.1. The fill rates are of the form Λ±t , λ±t h±(δ;κt), where the non-

increasing function h±(δ;κt) : R → [0, 1] is C2 in δ (uniformly in t for κt ∈ Rn, fixed

ω ∈ Ω), and lim
δ→∞

δ h±(δ;κt) = 0 for every κt ∈ Rn. Moreover, the functions h±(δ;κt)

satisfy: h±(δ;κt) = 1 for δ ≤ 0, κt ∈ Rn.

Assumption 3.3.1 allows for very general dynamics on the LOB through the depen-

dence of the FPs h±(δ;κt) on the process {κt}0≤t≤T . The FPs can be viewed as a

parametric collection, with the exponential class h±(δ;κt) = e−κ
±
t δ and power law class

h±(δ;κt) = (1 + (κ±t δ)
γ±)−1 being two prime examples where κt = (κ−t , κ

+
t ). The pro-

cess κt introduces dynamics into the collection of FPs reflecting the dynamics in the

LOB itself. The differentiability requirements in Assumption 3.3.1 are necessary for the

asymptotic expansions we carry out later on to be correct. The limiting behavior for large
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δ implies that the book (volume) thins out sufficiently slowly such that the FPs decay

sufficiently fast (faster than linear) so that it is never optimal to place orders infinitely

far away from the midprice. Finally, the requirement that h±(δ;κt) = 1 for δ ≤ 0 and

∀κt ∈ Rn is that of a financial one. A trader wanting to maximize her chances of being

filled the next time a market order arrives must post the limit orders at the midprice, i.e.,

δ = 0, or she can also cross the midprice, i.e., δ < 0. In these cases we suppose that the

fill rate is Λ±t = λ±t ; i.e., it equals the rate of incoming market orders. This assumption

makes crossing the midprice a suboptimal decision because the trader cannot improve

the arrival rate of market orders (since Λ±t is constant when δ± ≤ 0) while receiving less

spread for posting at a more competitive price. Thus, she will always post limit orders

that are δ± ≥ 0 away from the midprice. Additionally, this condition is more desirable

than explicitly restricting the controls δ± to be non-negative, since it is not necessary to

check the boundary condition at δ± = 0; it will automatically be satisfied. Moreover, we

have the added bonus that the optimal control satisfies the first-order condition.

Assumption 3.3.2. The dynamics for κt = (κ−t , κ
+
t ) satisfies dκ−t = βκ(θκ − κ−t ) dt+ ηκ dM

−
t + νκ dM

+

t + η̃κ dZ
−
t + ν̃κ dZ

+
t ,

dκ+
t = βκ(θκ − κ+

t ) dt+ νκ dM
−
t + ηκ dM

+

t + ν̃κ dZ
−
t + η̃κ dZ

+
t ,

(3.3)

where ηκ, νκ, η̃κ and ν̃κ are non-negative constants and θκ and βκ are strictly positive

constants.

Assumption 3.3.2 is a specific modeling assumption on κt which allows for incoming

influential market orders and news events to have an impact on the FPs. An increase

(decrease) in the fill rate can be due to two main factors: (i) a decrease (increase) in

LOB depth or (ii) an increase (decrease) in the distribution of market order volumes (in

a stochastic dominance sense). This is a one-way effect because influential market orders

cause jumps in the κt process, but jumps in the FP do not induce jumps in market order

arrivals. While it is possible to allow such feedback, empirical investigations (such as

those in Large (2007)) demonstrate that the incoming market orders influence the state

of the LOB and not the other way around.26 The mean-reversion term draws κ±t to the

long-run mean of θκ so that the impact of influential orders on the LOB is only temporary.

Typically, we expect the rate of mean-reversion βκ for the LOB to be slower than the

rate of mean-reversion β of the market order activity. In other words, the impact of

influential orders persists in the LOB on a longer time scale compared to their effect on

market order activity.

Observe that if market order volumes are independent and identically distributed (iid),

26This is in contrast to Cebirog̃lu and Horst (2013) where the authors pose a model to assess the
market impact of limit order submissions.
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then the κ±t processes can be interpreted as parameters directly dictating the shape of

the LOB. In particular, if the market order volumes are iid and exponentially distributed

and the shape of the LOB is flat, then the probability that a limit order at price level

St± δ±t is executed (given that a market order arrives) is equal to e−κ
±
t δ
±
t . Consequently,

κ±t can be interpreted as the exponential decay factor for the fill rate of orders placed

away from the midprice. In order to satisfy the C1 condition at δ± = 0 and the condition

that h±(δ,κt) = 1 for δ± ≤ 0, it is necessary to smooth the exponential function at δ = 0.

This is always possible, though, since there exist C2 functions for which the L2 distance

to the target function is less than any positive constant.

Moreover, immediately after an influential market buy/sell order arrives (which eats

into the sell/buy side of the book), the probability (given that a market order arrives)

that a limit order at price level St ± δ±t is executed is, for the same δ±, smaller than

the probability of it being filled before the influential order arrives. The intuition is the

following: Immediately after an influential market order arrives, market participants react

in anticipation of the increase of market activity they will face and decide to send limit

orders to the book. Since many market participants react in similar way, the probability

of limit orders being filled, conditional on a market order arriving, decreases.27

Although this specific setup (exponential fill probability) creates a microstructure model

with zero spread (best bid price = best offer price), our framework easily allows for a

non-zero spread. If h±(δ; κt) = 1 for δ smaller than some d > 0, then the spread would

be 2d. This is because when h±(δ; κt) = 1, it means that the trader is guaranteed to

be filled when the next market order comes in. In theory, this implies that the volume

on each side of the book at depth less than d is less than the smallest possible value for

the volume of an incoming market order. For continuous distributions on R+ for MO

volumes (with non-zero probability in an open neighbourhood of 0), this implies that the

LOB is empty at depth less than d, which can be confirmed in practice.

27It is also possible to have markets where, conditional on the arrival of a market order, the probability
of a limit order being filled increases immediately after the arrival of an influential order. We can
incorporate this feature into our model. Note also that in our general framework, immediately after the
influential buy/sell market order arrives, the intensities λ± increase and the overall effect of an influential
order on the fill rates Λ± = λ±t h±(δ,κt) is ambiguous when λ±t and h±(δ,κt) move in opposite directions

after the arrival of an influential order – for example, when h±(δ,κt) = e−κ
±
t δ.
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3.4 Short Term Alpha Dynamics: Directional Strate-

gies and Adverse Selection

The actions of market participants affect the dynamics of the midprice via activity in

the LOB and/or the execution of market buy and sell orders. For instance, the arrival of

public information is impounded in the midprice of the asset as a result of new market

orders and the arrival and cancellation of limit orders. Similarly, bursts of activity in

buy and/or sell market orders, which are not necessarily the result of the arrival of public

information, have market impact by producing momentum in the midprice.

As discussed above, a great deal of the strategies that HFTs employ are directional

strategies that take advantage of short-term price deviations. HFTs use their superior

speed to gather and process order flow information, as well as public information, to spot

fleeting opportunities which, in our model, are captured by the dynamics of short-term-

alpha. Short-term predictability is a key source of HF trading revenues for two reasons.

First, the strategies enable HFTs to exploit their superior knowledge of short-term trends

in prices to execute profitable roundtrip trades, and second, they provide key information

to update or cancel quotes that can be adversely picked off by other traders. This can

be modeled by simply taking ηκ < νκ, which will induce more arrivals of limit buy (sell)

quotes when an influential market buy (sell) order arrives.

One can specify the dynamics of the predictable drift αt in many ways and this depends

on the factors that affect the short-term drift which for HF market making are based

on order flow and news. Here we assume that αt is a zero-mean-reverting process and

jumps by a random amount at the arrival times of influential trades and news events.

If the influential trade was buy initiated (and therefore lifts a sell limit order) the drift

will jump up, and if the influential trade was sell initiated (and therefore hit a buy limit

order) the drift will jump down; news has a similar effect on αt. As such, we model the

predictable drift according to the following assumption.

Assumption 3.4.1. The dynamics for the predictable component of the midprice’s drift

{αt}0≤t≤T satisfies

dαt = −ζ αt dt+ σα dBt + ε+
M+
t

dM
+

t − ε−M−t dM
−
t + ε̃+

Z+
t

dZ+
t − ε̃−Z−t dZ

−
t (3.4)

where ε±k and ε̃±k are iid random variables (independent of all other processes) representing

the size of the sell/buy influential trade and news impact on the drift of the midprice.

From this point forward, we will omit the subscript for compactness. Moreover, {Bt}0≤t≤T

denotes a Brownian motion independent of all other processes, and ζ, σα are positive

constants.
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Moreover, we see how slower traders will be adversely selected by better informed and

quicker traders. For example, assume that αt = 0 and an HFT “detects” that the incom-

ing buy market order is influential. Her optimal directional strategy is to simultaneously

send the following orders to the LOB: cancel her sell limit orders, attempt purchase the

asset (from a slower market participant), and send new sell limit orders to be able to

unwind the transaction. Of course, these types of trades do not guarantee a profit, but on

average these roundtrips will be profitable because the HFT trades on short-term-alpha

and profits from other traders who are not able to update their quotes in time or who

submit market sell orders right before prices increase. Finally, even if HFTs who are able

to trade on short-term-alpha miss a fleeting opportunity to execute a directional trade,

they still benefit from updating their stale quotes in the LOB to avoid being adversely

selected by other market participants. Given our chosen dynamics on the fill probability

driving process κ±t in (3.3), the aforementioned effect can be modeled by taking ηκ < νκ,

which will induce more arrivals of limit buy (sell) quotes when an influential market buy

(sell) order arrives.

An alternative approach to adverse selection was introduced in Cartea and Jaimungal

(2013b), whereby MOs may induce an immediate jump in the midprice. The result of

such direct adverse selection effects was that the agent increases her optimal postings

by the expected jump size. In this chapter, we will see a similar, but distinct, result

whereby the agent adjusts her posting to protect herself against the potential change in

the midprice drift.

3.5 The HFT’s Optimization Problem

Thus far, we have specified counting processes for market orders and dynamics of the

LOB through the FPs; however, we also require a counting process for the agent’s filled

limit orders. To this end, let the processes {N+
t }0≤t≤T and {N−t }0≤t≤T denote the number

of the agent’s limit sell and buy orders, respectively, that were filled up to and including

time t, and the process qt = N−t −N+
t is the agent’s total inventory. Note that the arrival

rate of these counting processes can be expressed as Λ±t = λ±t h±(δ;κt), as in Assumption

3.3.1. Finally, the agent’s cash process (i.e. excluding the value of the qt shares she

currently holds) satisfies the SDE

dXt = (St + δ+
t−) dN+

t − (St − δ−t−) dN−t (3.5)

where δ±t− denotes the left-limit of the LO’s distance from the midprice (i.e. if the LO

was filled, the agent receives the quote that was posted an instant prior to the arrival of
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the MO).28 Note that it is equivalent to use St instead of St− in Equation (3.5) since the

trajectories of St are continuous.

3.5.1 Formulation of the HF Trading Problem

The HFT wishes to place sell/buy limit orders at the prices St ± δ±t at time t such that

the expected terminal wealth is maximized while penalizing inventories.29 The HFT is

continuously repositioning her limit orders in the book by cancelling stale limit orders

and submitting new limit orders.30 Specifically, her value function is

Φ(t, x, s, q, α,λ,κ) = sup
(δ−u ,δ

+
u )t≤u≤T∈A

E(t,x,s,q,α,λ,κ)

[
XT + qTST − φ

∫ T

t

q2
s ds

]
, (3.6)

where the supremum is taken over all (bounded) Ft previsible functions and φ ≥ 0 pe-

nalizes deviations of qt from zero along the entire path of the strategy. Moreover, F t is

the natural (and completed) filtration generated by the collection of processes{
St, ε

±
M±t

, M±
t = M

±
t + M̃±

t , N
±
t , Bt

}
and define the expanded filtration Ft = F t ∨

σ
{

(M
±
u )0≤u≤t

}
. Note that λt and κt are progressively measurable with respect to this

expanded filtration. Also notice that we use ε±
M±t

instead of ε±
M
±
t

in the definition of F t
so that one is not able to discern which trades were influential given this filtration. We

will often suppress the dependence on many of the variables in Φ(·) and recall that we

assumed υ = 0 in the dynamics of the midprice. As discussed in Section 2.1, Cartea

et al. (2013) show that the running penalty term in (3.6) can be interpreted as arising

from the agent’s ambiguity aversion with respect to the asset’s midprice.

The above control problem can be cast into a discrete-time controlled Markov chain as

carried out in Bäuerle and Rieder (2009). Classical results from Bertsekas and Shreve

(1978) imply that a dynamic programming principle (DPP) holds and that the value

function is the unique viscosity solution (see Appendix B.2) of the Hamilton-Jacobi-

28The technical issue is as follows: recall that the driving counting processes, and consequently, the
spreads, are right continuous with left-limits (RCLL). However, stochastic integrals must have integrands
that are left-continuous with right-limits (LCRL) for the integral w.r.t. a martingale integrator to still
be a martingale. Replacing δ±t with δ±t− achieves this goal.

29An alternative specification is to assume that the HFT is risk averse so that she maximizes expected
utility of terminal wealth. The current approach, however, is more akin to Almgren (2003), where
quadratic variation, rather than variance, is penalized, which acts on the entire path of the strategy.

30In this setup, the HFT’s limit orders are always of the same size. An interesting extension is to also
allow the HFT to choose the number of shares in each limit order.
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Bellman (HJB) equation

(∂t + L) Φ + αΦs + 1
2
σ2 Φss

+λ− sup
δ−

{
h−(δ−;κ)

[
S−q,λΦ(t, x− s+ δ−)− Φ

]
+ (1− h−(δ−;κ))

[
S−λΦ− Φ

]}
+λ+ sup

δ+

{
h+(δ+;κ)

[
S+
q,λΦ(t, x+ s+ δ+)− Φ

]
+ (1− h+(δ+;κ))

[
S+
λΦ− Φ

]}
=φ q2,

(3.7)

with boundary condition Φ(T, ·) = x + qs, and the integro-differential operator L is the

part of the infinitesimal generator of the processes αt, λt, κt, and Z±t which do not

depend on the controls δ±t . Explicitly,

L = β(θ − λ−)∂λ− + β(θ − λ+)∂λ+ + βκ(θκ − κ−)∂κ− + βκ(θκ − κ+)∂κ+

− ζ α∂α + 1
2
σ2
α∂αα + µ−

(
S̃−λ − 1

)
+ µ+

(
S̃+
λ − 1

)
.

(3.8)

Moreover, we have introduced the following shift operators:

S±λΦ = ρE
[
S±λ Φ

]
+ (1− ρ) Φ , (3.9a)

S±qλΦ = ρE
[
S±qλΦ

]
+ (1− ρ)S±q Φ , (3.9b)

S±qλ = S±q S±λ , (3.9c)

S±q Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q ∓ 1, α,λ,κ) , (3.9d)

S+
λ Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q, α + ε+,λ+ (ν, η)′,κ+ (νκ, ηκ)

′) , (3.9e)

S−λ Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q, α− ε−,λ+ (η, ν)′,κ+ (ηκ, νκ)
′) , (3.9f)

S̃+
λΦ(t, x, s, q, α,λ,κ) = E

[
Φ(t, x, s, q, α + ε̃+,λ+ (ν̃, η̃)′,κ+ (ν̃κ, η̃κ)

′)
]
, (3.9g)

S̃−λΦ(t, x, s, q,λ,κ) = E
[
Φ(t, x, s, q, α− ε̃−,λ+ (η̃, ν̃)′,κ+ (η̃κ, ν̃κ)

′)
]
. (3.9h)

The expectation operator E[·] in (3.9a) and (3.9b) is over the random variables ε± and

the expectation operator E[·] in (3.9g) and (3.9h) is over the random variables ε̃±.

The terms of the operator L have the usual interpretations: the first and second terms

cause the activity rates λ± to decay back to the long run level θ. The third and fourth

terms pull κ± to their long run level. The fifth and sixth term causes αt to diffusive and

mean-revert to zero. The seventh and eighth terms cause market order activities to jump

upon public news arrival. Furthermore, the various terms in the HJB equation represent

the jumps in the activity rate and/or a limit order being filled together with the drift

and diffusion of the asset price and the effect of penalizing deviations of inventories from

zero along the entire path of the strategy is captured by the term φq2. More specifically,

the supremum over δ− contain the terms due to the arrival of a market sell order (which

are filled by limit buy orders). The first term represents the arrival of a market order

(influential or not) which fills the limit order, while the second term represents the arrival
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of a market order (influential or not) which does not reach the limit order’s price level.

The supremum over δ+ contain the analogous terms for the market buy orders (which

are filled by limit sell orders).

3.5.2 The Feedback Control of the Optimal Trading Strategy

In general, an exact optimal control is not analytically tractable; two exceptions are

the cases of an exponential and power FPs where the optimal control admits exact

analytical solutions, as presented in Appendix D.1. For the general case, we provide

an approximate optimal control via an asymptotic expansion which is correct to o (ς)

where ς = max(φ, |α|,E[ε±]). In principle, the expansion can be carried to higher orders

if so desired.

Proposition 3.5.1. Optimal Trading Strategy, Feedback Control Form. The

value function Φ admits the decomposition Φ = x+ q s+ g(t, q, α,λ,κ) with g(T, ·) = 0.

Furthermore, assume that g(·) can be written as an asymptotic expansion as follows:

g(t, q, α,λ,κ) = g0(t, q,λ,κ) + α gα(t, q,λ,κ) + ε gε(t, q,λ,κ) + φ gφ(t, q,λ,κ) + o(ς) ,

(3.10)

with boundary conditions g·(T, ·) = 0. Note that the subscripts on the functions g do

not denote derivatives; rather they are labels, and we have written E[ε±] = ε a± with ε

constant. Then, the feedback controls of the optimal trading strategy for the HJB equation

(3.7) admit the expansion

δ±∗t = δ±0 + α δ±α + ε δ±ε + φ δ±φ + o(ς), (3.11)

where

δ±α = −B(δ±0 ;κ)
(
S±qλgα − S±λ gα

)
, (3.12a)

δ±ε = −B(δ±0 ;κ)
(
S±qλgε − S±λ gε ± ρ a

± (S±qλgα − S±λ gα)) , (3.12b)

δ±φ = −B(δ±0 ;κ)
(
S±qλgφ − S±λ gφ

)
, (3.12c)

and the coefficient B(δ±0 ;κ) =
h′±(δ±0 ;κ)

2h′±(δ±0 ;κ) + δ±0 h
′′
±(δ±0 ;κ)

. Moreover, δ±0 is a strictly positive

solution to

δ±0 h
′
±(δ±0 ;κ) + h±(δ±0 ;κ) = 0. (3.13)

A solution to (3.13) always exists. Furthermore, the exact optimal controls are non-

negative.
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Proof. See Appendix C.2.

In the next section, we use the optimal controls derived here to solve the nonlinear

HJB equation and obtain analytical expressions for gα, gε, and gφ which is the last step

we require to determine δ±∗t . Before proceeding, we discuss a number of features of

the optimal control δ±∗t given by (3.11). The terms on the right-hand side of equation

(3.11) show how the optimal postings are decomposed into different components: risk-

neutral (first term), adverse selection and directional (second and third), and inventory-

management (fourth term).

The risk-neutral component, given by δ±0 , does not directly depend on the arrival rate of

market orders, short-term-alpha, news arrival, or inventories. Instead, it depends on the

FPs. To see the intuition behind this result, we note that a risk-neutral HFT, who does

not penalize inventories, seeks to maximize the probability of being filled at every instant

in time. Therefore, the HFT chooses δ± to maximize the expected spread conditional

on a market order hitting or lifting the appropriate side of the book, i.e., maximizes

δ± h±(δ±;κt). The first order condition of this optimization problem is given by (3.13),

where we see that λ± plays no role in how the limit orders are calculated.31

The optimal halfspreads are adjusted by the impact that influential orders and news have

on short-term-alpha through the term αt δ
±
α + ε δ±ε to reduce adverse selection costs and

to profit from directional strategies. An HFT that is able to process information and

estimate the parameters of short-term-alpha will adjust the halfspreads to avoid adverse

selection and to profit from short-lived trends in the midprice. For example, if short-

term-alpha is positive, the HFT’s sell halfspread is increased to avoid being picked off,

and at the same time the buy halfspread decreases to take advantage of the first leg of a

directional strategy by increasing the probability of purchasing the asset in anticipation

of a price increase.

Finally, the fourth term is an inventory management component that introduces asym-

metry in the LO postings so that the HFT does not build large long or short inventories.

This component of the halfspread is proportional to the penalization parameter φ > 0

which induces mean reversion to the optimal inventory position.

31If there are multiple solutions to (3.13), the HFT chooses the δ± that yields the maximum of
δ± h±(δ±;κt).
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3.5.3 The Asymptotic Solution of the Optimal Trading Strategy

Armed with the optimal feedback controls, our remaining task is to solve the resulting

non-linear HJB equation to first order in ς. The following theorem contains a stochastic

characterization of the asymptotic expansion of the value function. This characterization

can be computed explicitly in certain cases and then plugged into the feedback control

to provide the optimal strategies.

Theorem 3.5.2. Solving The HJB Equation. The solutions for gα, gε and gφ can

be written as

gα = aα(t,λ,κ) + q bα(t) , (3.14a)

gε = aε(t,λ,κ) + q bε(t,λ) , (3.14b)

gφ = aφ(t,λ,κ) + q bφ(t,λ,κ) + q2 cφ(t) , (3.14c)

where

bα(t) = 1
ζ

(
1− e−ζ(T−t)

)
, (3.15a)

bε(t,λ) = E
[∫ T

t

{
ρ
(
a+ λ+

u − a− λ−u
)

+
(
ã+µ+ − ã−µ−

)}
bα(u) du

∣∣∣∣ λt = λ

]
,

(3.15b)

bφ(t,λ,κ) = 2E
[∫ T

t

{
h+

0,u λ
+
u − h−0,u λ−u

}
(T − u) du

∣∣∣∣λt = λ, κt = κ

]
, and (3.15c)

cφ(t) = − (T − t) . (3.15d)

In the above, h±0,u = h±(δ±0,u;κu), and, as before, we have written E[ε±] = εa± and

E[ε̃±] = εã±. Finally, the functions g0, aα, aε and aφ do not affect the optimal strategy.

Proof. See Appendix C.3.

The asymptotic expansion of the optimal controls now follows as a straightforward corol-

lary to Theorem 3.5.2. Note that the function bε can be computed explicitly, as is reported

in Appendix D.2. Moreover, under some specific assumptions on the FPs h± (e.g., if h±(·)
are exponential or power law functions), the function bφ can also be computed explicitly.

Proposition 3.5.4 provides a general class of models (which includes the exponential and

power law cases) for which simple closed form results are derived, and the implications

for the optimal limiting order postings have a very natural interpretation.

Corollary 3.5.3. Optimal Limit Orders. The asymptotic expansion of the optimal

controls to first order in ς is (dependencies on the arguments have been suppressed for
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clarity)

δ±∗ = δ±0 +B(δ±0 ;κ)

{
±S±λ

(
Et
[∫ T

t

αu du

])
+ φ
(
± S±λ bφ + (1∓ 2q)(T − t)

)}
(3.16)

where δ±0 satisfies (3.13) and we have
∣∣δ±opt − δ±∗∣∣ = o(ς). Furthermore, the optimal

controls max{δ±∗, 0} are also of order o(ς).32

Proof. See Appendix C.4.

The expression for the optimal control warrants some discussion which goes beyond the

discussion that followed the general result in Proposition 3.5.1. The term δ±0 represents

the action of a risk-neutral agent who is not aware of or is not able to estimate the impact

that influential market orders and news arrival have on the stochastic drift of the midprice

(so she sets it to zero). The first term in the braces accounts for the expected change in

midprice due to the potential impact of orders (and news) on the midprice’s drift as well

as the expected change to the arrival of orders. That is, this term plays a dual role in the

optimal strategy: it corrects for the adverse selection effect and positions the quotes to

execute directional strategies. If the drift is positive, the agent posts further away from

the midprice on the sell side (adverse selection correction) and closer to the midprice on

the buy side in anticipation of upward price movements (directional strategy). When the

drift is negative, the interpretation is similar. The term proportional to φ contains two

terms. The first of these terms accounts for LOB volume imbalance and the asymmetry

in the arrival rates of market orders on the sell and buy sides, while the second term

induces mean reversion to an optimal inventory level which is not necessarily zero.

Closed form expressions for the function bφ can only be derived under further assumptions

on the FPs h±(δ;κ). As a motivating factor, note that both exponential and power law

FPs have the property that h±(δ±0 ;κ) are constants, irrespective of the dynamics on the

shape parameter κ±. This leads us to investigate the larger class of models for which

h±(δ±0 ;κ) are constant. Under these assumptions, the following proposition provides an

explicit form for the function bφ.

Proposition 3.5.4. Explicit Solution for bφ(t,λ,κ). If h±(δ±0 ;κ) = h± are constants

P-a.s., then the function bφ(t,λ,κ) is independent of κ and is explicitly given by

bφ(t,λ) = 2ξ′
{(

A−1(T − t)−A−2
(
I− e−A(T−t)))[λ−A−1ζ

]
+ 1

2
(T − t)2 A−1ζ

}
,

(3.17)

32Note that the exact solution of the optimal control is non-negative as discussed in Assumption 3.3.1,
but this is not necessarily the case in the asymptotic solution: thus we write the optimal control as
max{δ±∗, 0}.
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where I is the 2× 2 identity matrix and ξ = (−h−, h+)′.

Proof. Note that E
[∫ T

t
λ±u (T − u) du|Ft

]
=
∫ T
t
E [λ±u |Ft] (T − u) du =

∫ T
t
m±t (u) (T −

u) du. Using the form of m±t (u) provided in Equation (C.2) and integrating over u implies∫ T

t
mt(u)(T − u) du =

(
A−1(T − t)−A−2

(
I− e−A(T−t)

)) (
λt −A−1ζ

)
+ A−1ζ 1

2(T − t)2 .

(3.18)

This result is valid under the restriction that A is invertible, which is implied by the

arrival rate of market orders in Equation (3.2) and Lemma 3.2.2. Moreover, when

h±(δ±0 ;κ) = h± we have bφ(t,λ) = 2
T∫
t

{h+ ·m+
t (u) − h− ·m−t (u)}(T − u) du and (3.17)

follows immediately.

As already mentioned, studying the class of models for which h±(δ±0 ;κ) = h± are constant

was motivated by the exponential and power-law cases which we formalize in the following

two examples.

Example 3.5.5. Exponential Fill Rate. Take κ± = f±(κ), where f± : Rk → R+

are continuous functions. If h±(δ;κ) = e−κ
±δ for δ > 0 and P

[
inf

t∈[0,T ]
κ±t > 0

]
= 1, then

h±(δ±0 ;κ) = e−1 is constant and Proposition 3.5.4 applies.

Example 3.5.6. Power Fill Rate. Take κ± = f±(κ), where f± : Rk → R+ are

continuous functions, and γ± > 1 are fixed constants. If h±(δ;κ) =
[
1 + (κ±δ)γ

±
]−1

for

δ > 0 and P
[

inf
t∈[0,T ]

κ±t > 0

]
= 1, then δ±0 = (γ± − 1)

− 1
γ± (κ±)−1 and h±(δ±0 ;κ) = γ±−1

γ±
is

constant and Proposition 3.5.4 applies.

It is worthy to note that the shifted exponential and power law models are also part

of this class. Namely h±(δ;κ) = e−κ
±(δ−d±) and h±(δ;κ) =

[
1 + (κ±(δ − d±))γ

±
]−1

,

respectively, for δ > d and 1 otherwise. In these cases, the asset trades with a spread of

d− + d+.

Notice that the Poisson model of trade arrivals can be recovered by setting ρ = 0. In

addition, if the initial states λ±0 are equal and κ± are equal then bφ ≡ 0.

The expression for the optimal control further simplifies considerably when (i) there are

no news events (so that µ̃+ = µ̃− = 0); (ii) the impact of influential orders on the

stochastic drift is symmetric in the sense that ε+ = E[ε+] = E[ε−] = ε− := ε; (iii)
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the parametric shape of the LOB’s FPs are symmetric, in the sense that the class of

functions h+ and h− are equal;33 and (iv) the fill probability at the risk-neutral optimal

control is independent of the scale parameters,34 i.e., h±(δ±0 ,κ) = const. Under these

assumptions, the two important (non-trivial) quantities which appear in the optimal

spreads in Equation (3.16) simplify to

E
[∫ T

t

αu du

]
= ε

ρ

ζ
(λ+

t − λ−t )

{
1− e−β̂(T−t)

β̂
− e−ζ(T−t) − e−β̂(T−t)

β̂ − ζ

}
+ αt

1− e−ζ(T−t)

ζ
,

(3.19a)

bφ = 2h (λ+
t − λ−t )

{
1

β̂
(T − t)− 1− e−β̂(T−t)

β̂2

}
, (3.19b)

where β̂ = β − ρ(η − ν) and h = h±(δ±0 ,κ) = const. Notice both expressions above

contain terms proportional to the difference in the market order activity on the buy and

sell sides. If there are no influential orders, these will be equal to their long-run levels and

will therefore be zero. However, when influential orders arrive, the buy and sell activities

differ, and the agent reacts accordingly. Moreover, the contribution of α accounts for the

effect of the mean-reverting stochastic drift of the inventory process.

Corollary 3.5.7. Mean Reversion of Inventory. Given the optimal strategy δ±, the

expected drift of the inventory process qt, is given by

lim
s→t+

1

s− t
E[qs − qt | Ft] = λ−t h−(δ−t ;κt)− λ+

t h+(δ+
t ;κt). (3.20)

Proof. By observing that δ−t , δ+
t , λt, and κt are all RCLL functions of t (for fixed ω ∈ Ω),

we can conclude that the expected drift in inventories is given by the difference in the

arrival rates of filled limit orders at time t.

Figure 3.3 illustrates the mean reversion rate of inventory as a function of current in-

ventory q when the FPs are exponential. This function is plotted for three different

inventory-aversion levels, as well as for α = 0 and α = 0.04. It is clear that when α = 0

(all else being symmetric), the agent’s inventory mean reverts to zero. When α = 0.04,

the agent seeks to acquire inventory to take advantage of the short-term drift of the asset.

By symmetry, the corresponding plot of the α = −0.04 (with λ−t and κ−t replaced with

λ+
t and κ+

t , and vice-versa) case will simply be a reflection (about the line q = 0) of

Figure 3.3(b).

33This does not imply that the LOB is symmetric because the scale parameters κ±t will differ. For

example, exponential FPs e−κ
±δ± satisfy this requirement, even though the book may be significantly

deeper on one side than the other.
34This condition is satisfied by (but not limited to) the exponential and power law FPs, as discussed
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Figure 3.3: Mean inventory drift.

3.6 HF Market Making, Short Term Alpha, and Di-

rectional Strategies

In this section, we apply a simulation study of the HF strategy where buy and sell

market orders are generated over a period of 5 minutes. The HFT is rapidly updating her

quotes in the LOB by submitting and cancelling limit orders which are filled according

to exponential FPs.35 The optimal postings are calculated using Corollary 3.5.3 and

the explicit form for bφ in Proposition 3.5.4. The processes λt, κt, and αt are updated

appropriately, and the terminal cash-flows are stored to produce the profit and loss (PnL)

generated from these strategies.

To generate the PnL, we assume that the final inventory is liquidated at the midprice

with different proportional transaction costs per share: 1 basis point (bp) and 10 bps.36

In practice, the HFT will bear some costs when unwinding a large quantity which could

be in the form of a temporary price impact (a consequence of submitting a large market

order) and by paying a fee to the exchange for taking liquidity in the form of an aggressive

market order. Finally, in each simulation the process is repeated 5, 000 times to obtain the

PnLs of the various strategies. More details on the simulation procedure are contained

in Appendix E.2.

in Examples 3.5.5 and 3.5.6, respectively.
35The results for power FPs are very similar, and so in the interest of space we do not show them.
36The transaction costs are computed on a percentage basis, and since the starting midprice in the sim-

ulations is $100, these correspond to approximately 1 and 10 cents per share, respectively. In particular,
qT shares are liquidated at a price of qT [ST − ctrans · sign(qT )].
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We analyze the performance of the HF market making strategy by varying the quality of

the information that the HFT is able to employ when calculating the optimal postings.

The main difference between these scenarios is whether the HFT is able to calculate

the correct ρ which, conditional on the arrival of an MO, is the probability that the

trade is influential and whether they are able to estimate the correct dynamics of short-

term-alpha; all of the HFTs know the equations that determine λ±t and κ±t but do not

necessarily know the correct parameters. We consider the following eight different HFTs:

1. Correct probability and identification of influential event (ρ). The HFT uses her

superior computing power to process information to estimate ρ and the other pa-

rameters that determine the dynamics of λ±t and κ±t . Furthermore, we assume that

the HFT may or may not be able to estimate the correct αt dynamics.

(a) Correct midprice drift (α) dynamics. This is our benchmark because we also

assume that the HFT is able to estimate the parameters of the αt process and

adjust her postings accordingly.

(b) Zero midprice drift (α) dynamics. Here we assume that although the HFT

is able to estimate the correct ρ she assumes that short-term alpha is zero

throughout the entire strategy.

2. Filtered influential indicators. Although this HFT has knowledge of the model

parameters, she cannot observe which trades are influential and which are not.

(a) Filtered midprice drift (α) dynamics. She employs a particle filter with one

particle (as described in Section 5.5.2) to estimate which trades are influential

and produce jumps in λt, κt, and αt and adjusts her postings accordingly.

(b) Zero midprice drift (α) dynamics. The HFT assumes that short-term-alpha is

always zero.

3. High probability of influential event (ρ). At one extreme, we have an HFT who

cannot distinguish between the types of market orders and assumes that all orders

are influential, ρ = 1. The jump sizes in λ±t and κ±t are set so that the long-run

means are λ±t = m±t (∞) and κ±t = m̃±t (∞).

(a) Incorrect midprice drift (α) dynamics. Because the HFT assumes that all or-

ders are influential she is not able to correctly predict short-term-alpha; she

either overestimates or underestimates the effect that market orders have on

short-term-alpha because every time there is an incoming market order the

HFT will predict a jump in αt. The mean jump size parameter, ε, is also

rescaled by the correct ρ.

(b) Zero midprice drift (α) dynamics. The HFT assumes that short-term-alpha is

always zero.
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4. Low probability of influential event (ρ). At the other extreme, we have an HFT

who cannot distinguish between order type and assumes that all orders are non-

influential, ρ = 0, and assumes that λ±t , κ±t are constant and set at their long-run

means: λ±t = m±t (∞), given in Lemma 3.2.2, and κ±t = m̃±t (∞), given in Lemma

D.3.1.

(a) Incorrect midprice drift (α) dynamics. Because the HFT assumes that all or-

ders are non-influential she is not able to correctly predict short-term-alpha;

she only observes the diffusion components and not the jumps.

(b) Zero midprice drift (α) dynamics. The HFT assumes that short-term-alpha is

always zero.

In all eight cases, the data generating process (DGP) is the true process. We assume

that news does not arrive during the 5-minute (T = 300) simulation and assume the

following values for the parameters (unless otherwise stated): β = 60 and θ = 1 (speed

and level of mean reversion of intensity of market order arrivals); η = 40 and ν = 10

(jumps in λt upon the arrival of influential market orders); βκ = 10 and θκ = 50 (speed

and level of mean reversion for the κt process); ηκ = 10 and νκ = 25 (jumps in κt upon

the arrival of influential market orders); υ = 0 (long-term component of the drift of

the midprice); σ = 0.01 (volatility of diffusion component of the midprice); ζ = 2 and

σα = 0.01 (speed of mean reversion and volatility of diffusion component of αt process);

and, finally, we consider the two cases ρ = 0.3 and ρ = 0.7 (probability of the market

order being influential). Moreover, ε± are both exponentially distributed with the same

mean, E [ε±] = ε, for the buy and sell impacts. In these simulations, we consider two

cases: ε = 0.04 and ε = 0.02.

The first column in Figure 3.4 shows the information that the benchmark HFT employs

to calculate her optimal strategy. The top picture shows the dynamics of αt over ap-

proximately a two-second window. We see that for this particular time interval of the

simulation, αt is negative most of the time and every time an influential order arrives the

stochastic drift jumps up (buy market order) or down (sell market order) by a random

amount which is drawn from an exponential distribution with mean ε = 0.04. In the

same column we also show the dynamics of the market order activity λ± and the FP

parameter κ±t .

In the second column of the same figure we show the information employed by the HFT

who incorrectly assumes that all MOs are influential (i.e. assumes ρ = 1) when the true

parameter is ρ = 0.7. In the top picture we observe that by overstating the arrival rate

of market orders this HFT also overestimates the impact that MOs have on short-term-

alpha. The other two pictures in the column show the HFT’s estimate of the arrival rate of

market orders and fill rates. Obviously, when compared to those used by the benchmark
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HFT these are incorrect estimates of the true λ±t , κ
±
t because the HFT sets the jump

sizes in λ±t and κ±t so that the long-run means m±t (∞) and m̃±t (∞) are preserved.

Finally, the last column shows the information used by the HFT who incorrectly assumes

that all orders are non-influential ρ = 0. From the pictures it is clear that this HFT has

a poor estimate of αt , λ
±
t , κ

±
t .

Figure 3.5 shows how the HFTs post and cancel limit orders during the same two-second

window discussed in Figure 3.4 and the inventory-management parameter is φ = 10−5.

The top row of Figure 3.5, pictures (a), (b), and (c), shows the optimal postings for: the

benchmark HFT with correct ρ = 0.7, the HFT with ρ = 1, and the HFT with ρ = 0

respectively, all of which employ the information shown in Figure 3.4. The bottom row

of Figure 3.5 shows the postings of the HFTs with the correct and incorrect values of ρ,

where all of these assume that αt = 0 and ε = 0 along the entire strategy.

To understand the intuition behind the optimal postings of the benchmark HFT, let us

focus on Figure 3.5(a). The solid line shows the midprice and the dash-dot lines show

the buy and sell limit orders. Circles denote the arrival of influential market orders and

squares the arrival of non-influential orders. When the circles and squares are colored in,

it shows that the market order was filled by the benchmark HFT. Otherwise, when the

circles and squares are not colored in, it represents market orders that arrived but were

filled by other more competitive resting orders in the LOB.

One can observe that αt is a key driver of the optimal postings. At the beginning of the

window in Figure 3.5(a), we see that an influential sell market order arrived (hitting the

buy side of the book), thus short-term-alpha drops (as seen in the top picture in Figure

3.4(a)) and the benchmark HFT cancels her existing limit orders and reposts limit orders

that see an increase in the halfspread on the buy side and a decrease in the halfspread on

the sell side. These changes in the halfspread are due to adverse selection and directional

strategies. Because the benchmark HFT observes a very low αt near the beginning of

the window, she knows that negative short-term-alpha over a very short time interval

(recall that αt is quickly mean reverting to zero) indicates that if she does not adjust

her buy quote downward, she will be picked off by traders that might have anticipated

a decline in the midprice (or picked off by a noise trader that sends a sell market order)

– thus the benchmark HFT’s strategy is to avoid buying the asset right before the price

drops. Similarly, the downward adjustment in the sell spread (i.e. adjust the sell quote

downward) is part of a directional strategy whereby the benchmark HFT wants to sell

the asset before its price drops and then purchase it back at a lower price.37

37The drop in the sell halfspread is also due to inventory management. If the HFT holds a large
inventory, she would prefer to sell some of it because of the expected decline in the value of the inventory
as a consequence of a drop in the midprice.
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Here we show the PnLs that the HFTs face when executing the optimal strategy. We

report the results in Tables 3.1 and 3.2 where the difference between the two tables is

the impact that influential orders have (ε = 0.04 and ε = 0.02) on short-term-alpha.

In both tables, terminal inventories qT are liquidated at the midprice ST and pick up

a penalty of 1bps and 10bps per share. The tables show the results for different values

of the inventory-management parameter φ = {1 × 10−5 , 2 × 10−5 , 4 × 10−5}. For each

value of φ, we show the mean and standard deviation of the eight PnLs where the top

row, for each φ, reports the four PnLs resulting from the benchmark HFT (who uses the

correct ρ = 0.7), the filtered HFT (who uses advanced the statistical filtering method in

Section 5.5.2 when the influential indicators are unobservable), and the other two HFTs

who incorrectly specify the arrival of influential and non-influential market orders. For

each φ, the bottom row shows the other four PnLs that result from assuming that the

HFTs set αt = 0 throughout the entire strategy.

The tables clearly show that market making is more profitable if the HFTs incorporate

in their optimal strategies predictions of short-term-alpha – this is true even if the HFTs

incorrectly specify the short-term-alpha parameters. Moreover, when the mean impact of

influential orders on αt is ε = 0.04, Table 3.1 clearly shows that HFTs who are not able

to execute market making strategies based on predictable trends in the midprice will be

driven out of the market because their trades are being adversely selected and because

they are unable to profit from directional strategies; HFTs who omit short-term-alpha

face negative, or at best close to zero, mean PnLs. Table 3.2 shows that if the mean

impact of influential orders decreases to ε = 0.02, HFTs are able to subsist even if they

do not use predictors of short-term-alpha when making markets; however, we believe

that in practice HFTs will not survive if they are not able to trade on short-term-alpha

to profit from directional strategies and to reduce the effects of adverse selection.38

The inventory-management parameter φ plays an important role in the performance

of the HFT strategies. Although the HFTs are maximizing expected terminal wealth

(and not expected utility of terminal wealth), they are capital constrained, and their

own internal risk-measures require them to penalize building and holding large positions.

HFTs that wish to, or are required to, exert a tight control on their exposure to inventories

will prefer a high φ. Tables 3.1 and 3.2 show an interesting effect of φ on the PnL of the

different strategies that we study. If the HFT uses her predictions of short-term-alpha to

make markets, increasing φ reduces both the mean and standard deviation of the PnL.

Thus, in these cases the tradeoff between mean and standard deviation of profits is clear:

those HFTs who trade on short-term-alpha are able to trade off mean against standard

deviation of PnL.

38We are grateful to an anonymous referee of Cartea et al. (2014) for pointing this out.
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Case I: ε = 0.04, ρ = 0.7 and liquidation costs = 1bp

φ αt Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 14.09 12.07 12.77 -4.34

(std) (6.98) (6.93) (6.44) (3.00)

No
mean -3.81 -3.48 -3.88 -4.32

(std) (2.83) (2.80) (2.83) (2.94)

2× 10−5
Yes

mean 13.52 11.66 12.15 -2.80

(std) (5.44) (5.40) (5.01) (2.21)

No
mean -1.57 -1.44 -1.71 -2.80

(std) (2.07) (2.04) (2.06) (2.17)

4× 10−5
Yes

mean 12.49 10.88 11.08 -1.24

(std) (4.28) (4.24) (3.94) (1.60)

No
mean 0.24 0.27 0.06 -1.25

(std) (1.48) (1.46) (1.48) (1.58)

Case II: ε = 0.04, ρ = 0.7 and liquidation costs = 10bp

φ αt Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 13.32 11.28 12.05 -4.81

(std) (6.80) (6.77) (6.29) (3.12)

No
mean -4.28 -3.94 -4.34 -4.78

(std) (2.98) (2.93) (2.98) (3.07)

2× 10−5
Yes

mean 12.87 11.00 11.55 -3.19

(std) (5.30) (5.29) (4.90) (2.32)

No
mean -1.96 -1.82 -2.10 -3.19

(std) (2.20) (2.16) (2.19) (2.28)

4× 10−5
Yes

mean 11.94 10.33 10.58 -1.56

(std) (4.17) (4.16) (3.85) (1.69)

No
mean -0.09 -0.05 -0.27 -1.57

(std) (1.59) (1.57) (1.59) (1.67)

Table 3.1: The mean and standard deviation of the PnL from the various strategies as the
inventory-management parameter φ increases, ε = 0.04, and final inventory liquidation
costs are 1bps and 10bps per share. Recall that only the benchmark HFT, who uses
ρ = 0.7, is able to correctly specify the dynamics of short-term-alpha.
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Case III ε = 0.02, ρ = 0.7 and liquidation costs = 1bp

φ Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 8.81 7.90 8.16 1.25

(std) (2.84) (2.82) (2.60) (1.55)

No
mean 1.66 1.76 1.61 1.23

(std) (1.46) (1.45) (1.47) (1.52)

2× 10−5
Yes

mean 8.29 7.47 7.63 1.84

(std) (2.23) (2.19) (2.04) (1.15)

No
mean 2.55 2.56 2.48 1.80

(std) (1.09) (1.07) (1.08) (1.13)

4× 10−5
Yes

mean 7.41 6.72 6.77 2.33

(std) (1.75) (1.71) (1.60) (0.85)

No
mean 3.08 3.04 2.99 2.30

(std) (0.81) (0.80) (0.80) (0.84)

Case IV ε = 0.02, ρ = 0.7 and liquidation costs = 10bps

φ Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 8.16 7.25 7.57 0.79

(std) (2.75) (2.74) (2.53) (1.69)

No
mean 1.19 1.30 1.15 0.77

(std) (1.62) (1.60) (1.63) (1.67)

2× 10−5
Yes

mean 7.75 6.93 7.13 1.45

(std) (2.16) (2.14) (1.99) (1.27)

No
mean 2.16 2.18 2.09 1.42

(std) (1.23) (1.20) (1.22) (1.26)

4× 10−5
Yes

mean 6.95 6.27 6.35 2.00

(std) (1.70) (1.68) (1.57) (0.95)

No
mean 2.75 2.72 2.66 1.98

(std) (0.92) (0.91) (0.92) (0.95)

Table 3.2: The mean and standard deviation of the PnL from the various strategies as the
inventory-management parameter φ increases, ε = 0.02, and final inventory liquidation
costs are 1bps and 10bps per share. Recall that only the benchmark HFT, who uses
ρ = 0.7, is able to correctly specify the dynamics of short-term-alpha.



Chapter 3. Market Making in a Single Asset 52

On the other hand, the effect of increasing φ on the PnL of HFTs that do not take into

account short-term-alpha is to increase the mean and to decrease the standard deviation

of the PnL. The intuition behind this result is the following. As we have shown, HFTs

that do not trade using predictions of short-term-alpha suffer from being picked off by

better informed traders and are unable to boost their profits using directional strategies.

However, increasing φ makes their postings more conservative because, everything else

being equal, the limit orders are posted deeper in the LOB, and this makes it more

difficult for other traders to pick off their quotes. Thus, by increasing φ, the HFT

reduces her exposure to adverse selection and this explains why the mean PnL increases

in φ. Finally, the standard deviation of the PnL decreases because, when φ increases,

the strategy induces very quick mean reversion of inventories to zero.

The filtered strategy (the one that is unable to observe which trades are influential)

tends to slightly underperform the benchmark strategy, just as one would expect. This

is because the filtered strategy is adapted to F t−, a filtration that is contained by Ft−
which the benchmark strategy is adapted to. Note that this strategy is adapted to the

left limit F t− and not F t. The details for the construction of estimators for which events

are influential are described later in Section 5.5.2.

One surprising result is that, in several cases, the ρ = 1 case outperforms the filtered

strategy, even though the ρ = 1 strategy is also F t− measurable. This is due to the choice

of estimator λ̂t = 1
M

M∑
i=1

λ
(i)
t in Section 5.5.2. Although this quantity is unbiased for λt,

the effect on PnL of under/over-estimating λt is highly asymmetric. If the investor thinks

that an MO is influential when it is not, then her risky position is that of a martingale.

However, if she thinks an MO is not influential when, in fact, it is, then she risks having

her LO filled in a market that is moving against her. It is not clear what estimator λ̂t
should be used in this context, and this is left for future research.

Finally, we repeat the simulations by assuming that influential orders arrive with prob-

ability ρ = 0.3. Table 3.3 shows the results when we assume that ε = 0.04 and ε = 0.02

and final inventory liquidation costs are 1bp. Observe that although the ρ = 1 strategy

outperforms the filtered strategy for high ρ (i.e. 0.7), this effect is mitigated when the

true ρ is far different from 1 (as in this case when ρ = 0.3). Also note that now the

ρ = 0 agent performs significantly better, relative to the other agents (although still is

the worst of the four strategies). The other results are qualitatively the same as those

discussed above. We have also run simulations with different parameter choices, and the

benchmark HFT always performs better than the other HFTs.
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ε = 0.04, ρ = 0.3 and liquidation costs = 1bp

φ Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 4.97 4.03 4.16 2.60

(std) (1.43) (1.48) (1.19) (1.26)

No
mean 2.59 2.56 2.59 2.57

(std) (1.21) (1.22) (1.22) (1.23)

2× 10−5
Yes

mean 4.79 3.92 4.01 2.70

(std) (1.11) (1.13) (0.92) (0.94)

No
mean 2.78 2.74 2.74 2.67

(std) (0.91) (0.91) (0.91) (0.92)

4× 10−5
Yes

mean 4.47 3.70 3.72 2.75

(std) (0.87) (0.88) (0.71) (0.70)

No
mean 2.88 2.83 2.81 2.72

(std) (0.68) (0.69) (0.69) (0.70)

ε = 0.02, ρ = 0.3 and liquidation costs = 1bp

φ Bench. Filter ρ = 1 ρ = 0

1× 10−5
Yes

mean 4.69 4.30 4.34 3.86

(std) (0.81) (0.82) (0.74) (0.80)

No
mean 3.87 3.84 3.85 3.83

(std) (0.77) (0.77) (0.77) (0.78)

2× 10−5
Yes

mean 4.51 4.15 4.19 3.82

(std) (0.65) (0.65) (0.59) (0.61)

No
mean 3.85 3.82 3.82 3.78

(std) (0.60) (0.60) (0.60) (0.61)

4× 10−5
Yes

mean 4.19 3.89 3.91 3.66

(std) (0.53) (0.52) (0.48) (0.49)

No
mean 3.71 3.68 3.68 3.63

(std) (0.48) (0.48) (0.48) (0.48)

Table 3.3: The mean and standard deviation of the PnL from the various strategies as
the inventory-management parameter φ increases, ε = 0.04 and 0.02, and final inventory
liquidation costs are 1bps per share. Recall that only the benchmark HFT, who uses
ρ = 0.3, is able to correctly specify the dynamics of short-term-alpha.
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3.7 Conclusions

We develop an HF trading strategy where the HFT uses her superior speed advantage to

process information and to send orders to the LOB to profit from roundtrip trades over

very short-time scales. One of our contributions is to differentiate market orders between

influential and non-influential. The arrival of influential market orders increases market

order activity and also affects the shape and dynamics of the LOB. On the other hand,

when non-influential market orders arrive they eat into the LOB but have no effect on

the demand or supply of shares in the market.

Another contribution is to model short-term-alpha in the drift of the midprice as a zero-

mean reverting process which jumps by a random amount upon the arrival of influential

market orders and news. Influential buy and sell market orders induce short-lived upward

and downward trends in the midprice of the asset (good and bad news have a similar

effect). This specification allows us to capture the essence of HF trading – to exploit short-

lived predictable opportunities by way of directional strategies, and to supply liquidity

to the market, taking into account adverse selection costs.

The trading strategy that the HFT employs is given by the solution of an optimal control

problem where the trader is constantly submitting and cancelling limit orders to maximize

expected terminal wealth, while managing inventories, over a short time interval T . The

strategy shows how to optimally post (and cancel) buy and sell orders and is continuously

updated to incorporate information on the arrival of market orders, news (good, bad and

ambiguous), size and sign of inventories, and short-term-alpha. The optimal strategy

captures many of the key characteristics that differentiate HFTs from other algorithmic

traders: profit from directional strategies based on predicting short-term-alpha; reduced

exposure to limit orders being picked off by better informed traders; and strong mean

reversion of inventories to an optimal level throughout the entire strategy (and to zero

at the terminal time).

Our framework allows us to derive asymptotic solutions of the optimal control problem

under very general assumptions on the dynamics of the LOB. We test our model using

simulations where we assume different types of HFTs who are mainly characterized by

the quality of the information that they are able to process and incorporate into their

optimal postings. We show that those HFTs who incorporate predictions of short-term

price deviations in their strategy will deliver positive expected profits. The other HFTs

are driven out of the market because their limit orders are picked off by better informed

traders and cannot profit from directional strategies which are also based on short-lived

predictable trends. We also show that those HFTs who cannot execute profitable direc-

tional strategies and are systematically being picked off can stay in business if they exert
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tight controls on their inventories. In our model, these controls imply a higher penalty

on their inventory position which pushes the optimal limit orders further away from the

midprice so the chances of being picked off by other traders are considerably reduced.

One aspect that we have left unmodeled is when it is optimal for the HFT to submit mar-

ket orders. We know that HFTs submit both aggressive and passive orders. Depending

on short-term-alpha it might be optimal for the HFT to submit aggressive orders (for one

or both legs of the trade) to complete a directional strategy. In our stochastic optimal

control problem, the HFT does not execute market orders; the best she can do is send

limit orders at the midprice (zero spread), but this is no guarantee that the limit order

will be filled in time for the HF strategy to be profitable. We leave for future research

the optimal control problem where HFTs can submit both passive and aggressive orders

in this specific theoretical context. Market orders are included in the application of this

chapter’s MM strategy to real data in Section 6.3 and the multiple asset HFT problem

posed in Chapter 4.

Finally, the self-exciting nature of our model captures other important features of strate-

gic behavior which include “market manipulation”. For example, algorithms could be

designed to send market orders, in the hope of being perceived as influential, to trigger

other algorithms into action and then profit from anticipating the temporary changes

in the LOB and short-term-alpha. Market manipulation strategies are not new to the

marketplace; they have been used by some market participants for decades. Perhaps

what has changed is the speed at which these techniques are executed and the question

is whether speed enhances the ability to go undetected. Analyzing such strategies is

beyond the scope of this thesis.



Chapter 4

Algorithmic Trading in Multiple

Assets

4.1 Introduction

There has been extensive research done in single asset optimal trading. Whether it is in

an optimal liquidation/acquisition framework as in Almgren and Chriss (2000), Almgren

(2003), Kharroubi and Pham (2010), Guéant et al. (2012), and Bayraktar and Ludkovski

(2012), or in a general profit/utility maximization setting as in Avellaneda and Stoikov

(2008), Guilbaud and Pham (2013b), and Cartea et al. (2014), single asset high frequency

trading (HFT) control problems have been studied in a variety of flavours. In contrast

to these, we develop an optimal trading strategy in the presence of multiple assets that

are not only correlated, but present static arbitrage opportunities if their midprices stray

outside the no-arbitrage region. This will be made precise later and the size/shape of

this region will be dictated by the assets’ bid/offer spreads.

The framework presented in this chapter is motivated by the following illustrative exam-

ple. Suppose that an investor maximizes expected wealth by trading in a futures which

matures at time T1 and also trades in its underlying. Further assume that this underlying

equity does not pay dividends and the risk-free rate is zero. Let S1
t denote the price of

the underlying equity at time t and S2
t the price of the futures contract. In an economy

where assets are traded with a zero bid-ask spread (that is, the price to sell or buy the

asset is the same), we have, by no-arbitrage, S1
t = S2

t for all t ≤ T1. If this equality does

not hold, then there exists an arbitrage.

Now assume that an underlying equity and its futures contract trade with bid-ask spreads

56
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ξ1 > 0 and ξ2 > 0, respectively. In this case, it is possible for the market to bear arbitrage-

free prices of the form S1
t 6= S2

t . To see this, assume that S1
t > S2

t . To arbitrage these

prices the investor sends a buy market order (MO) for the futures contract, for which

she must cross the spread and pay S2
t + ξ2/2, and simultaneously sends a sell MO for the

underlying and obtains S1
t−ξ1/2. This trade is an arbitrage if (S1

t−ξ1/2)−(S2
t +ξ2/2) > 0.

Hence, it is simple to show that the no-arbitrage region is |S1
t − S2

t | ≤ (ξ1 + ξ2)/2.

Similarly, suppose we want to make markets in the following three derivatives: The

first nearby futures contract written on an equity having maturity T1, the second nearby

futures contract written on the same equity having maturity T2 > T1, and the 1-2 calendar

spread contract39 having maturity T1. If an investor wants to trade all three assets, and

is concerned with holding risky positions for any period of time, then she should try to

take advantage of the fact that some of these assets are strongly correlated with each

other. Furthermore, these three assets are more than just correlated. By construction of

the calendar spread contract, this economy has more structure than that of one that is

just governed by correlated diffusion processes.

In this chapter, we have an investor who wishes to make markets via limit orders (LOs)

in a mutliple asset economy. In addition to this, the investor may trade aggressively

and take liquidity via market orders if she sees a profitable opportunity in the form of a

statistical arbitrage. The goal is to maximize cash profits at some terminal time T , while

controlling for inventory risk by penalizing open positions.

We show that the optimal trading strategy has two active components. When sufficiently

far from the no-arbitrage boundary, the investor makes markets and prefers to hold no

inventory, or some combination of the assets that has little risk. When the midprice is

reasonably close to the no-arbitrage boundary, the investor will adjust her limit quote

depth and possibly execute market orders to advantage of this statistical arbitrage op-

portunity.

Inventory control also plays a crucial role in the optimal trading strategy. Optimal LO

depth as a function of inventory and a graphical representation of the continuation region

will present the reader with financial intuition as to how this strategy is qualitatively

operating. We also test our strategy against simulated data for a number of values of the

inventory penalty parameter φ, which yields an efficient frontier of trading strategies.

Finally, an explicit numerical scheme is provided to solve the resulting Hamilton-Jacobi-

Bellman (HJB) quasi-variational inequality (QVI) on a discrete grid in time and space,

39The 1-2 calendar spread is a derivative that forces one party to exchange the T2 maturity contract
for the underlying asset at time T1. Its payoff can be decomposed into being long the T1 contract and
short the T2 contract.
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as well as a dimensional reduction in the spatial variables. We prove that this scheme

indeed converges to viscosity solution of the HJBQVI.

This chapter is organized as follows: Section 4.2 contains definitions and some modeling

assumptions, Section 4.3 states and discusses properties of the optimal trading strategy,

Section 4.4 details a simulation study and the performance of various strategies are

analyzed, Section 4.5 discusses the discretization scheme and convergence to the viscosity

solution, and Section 4.6 is for conclusions.

4.2 The Model

Here we develop a framework for investors who trade in a basket of assets. Our main

focus is on assets that exhibit strong structural dependencies as in the example above

where the investor trades in a futures contract and the underlying. The main question

we answer is: How can an investor design an algorithmic strategy to take advantage of

this structural dependency between assets?

We assume that the economy trades n risky assets with midprices at time t given by

Sit , i = 1, · · · , n, and respective bid-offer spreads ξi > 0, both of which we arrange in

n-dimensional vectors St and ξ respectively. We also assume the existence of a cash asset

(i.e., risk-free asset that offers zero return) which trades with zero bid-ask spread.

In classical works in quantitative finance, when one asset’s payoff is just a linear combi-

nation of the others, then the economy would contain a redundant asset. However, when

some of these assets trade with a bid-offer spread, this redundancy ceases to exist. We

classify a multiple asset economy as over-complete if there exists a non-zero portfolio and

a finite investment horizon T such that this portfolio matures at a constant.

Definition 4.2.1. A financial system is said to be over-complete if ∃b ∈ Rn , T > 0 with

‖b‖ > 0 such that V [b · ST ] = 0, provided ST ∈ L2(Ω,FT ,P), where V is the variance

operator, and the operation · is the dot product.40

Our motivating example (first two nearby futures and the calendar spread) fits into this

framework with portfolio b = (1, −1, −1) and T being the maturity of the first nearby

futures. The illustrative example that will be used throughout this chapter (first nearby

40Unless otherwise stated, all random variables and stochastic processes in this chapter are defined
on the completed, filtered probability space (Ω,FT ,F,P) with filtration F = {Ft}0≤t≤T and where P
is the real-world probability measure. Note that the filtration F is only defined up to time T < T ,
whereas P is defined on the larger σ-algebra FT . In this chapter, F is the natural filtration generated by
(St, M

±
t , N

±
t ), all of which will be defined later.
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futures and the underlying equity) also fits into this framework with b = (1, −1) and T

being the maturity of the futures contract.

In Definition 4.2.1, the trivial portfolio b = 0 is excluded from Rn since V [0 · ST ] would

always be zero, making every economy over-complete and rendering this distinction triv-

ial. Notice that if the economy does not admit such a portfolio (i.e. there does not exist

such a vector b), then this problem reduces to a multiple asset problem with correlated

assets. The no-arbitrage region in this simplified case would be all of Rn. Also observe

that the set from Definition 4.2.1 consists of all the riskless portfolios when considering

T as the investment horizon. However, this may be the only investment horizon where

these portfolios are riskless.

Definition 4.2.2. Define the space B as the set of all vectors b from Definition 4.2.1

plus the origin. Observe that B is a subspace of Rn.

We require the set B in Definition 4.2.2 to include the origin so that it is, in fact, a

subspace. In the simplified case where the economic system is not over-complete, the set

B would only consist of the origin.

Definition 4.2.3. The no-arbitrage region, denoted A ⊂ Rn, is the set of midprices that

makes this economy arbitrage free.

It is worthy to point out that the no-arbitrage region is open. More specifically, A is the

set of midprices such that the initial cost to purchase a portfolio b minus the terminal

payoff, b · ST , is strictly negative, whenever this portfolio matures at a constant value

(i.e. when V [b · ST ] = 0).

This observation deserves some explanation. It is clear that the no-arbitrage set A, as

previously described, is open. So what happens on the boundary? These portfolios have

cost equal to their maturity value. So how exactly is it an arbitrage? It has the potential

for profits via the following strategy: Obtain portfolio b now for cost b · ST . There is a

positive probability that prior to T , St will move to a value (within A) such that a filled

limit quote on one asset combined with liquidation of the others assets via market orders

produces a net gain. Because there is a positive probability that such an opportunity

does not arise, having initial cost strictly less than b · ST is enough to ensure it is not

an arbitrage portfolio. This is due to the fact that if the agent can only execute market

orders, the portfolio b (which costs b · ST to obtain) can be liquidated for exactly b · ST
only in the best case scenario (on the opposite boundary). In fact, this scenario is only

in the closure of A, and hence the midprice process can only move arbitrarily close to

it. Notice that the only assumption we have made here is that the spreads are positive

constants.
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In the 2-dimensional illustrative example consisting of a futures contract and its under-

lying, we have A =
{
s ∈ R2 : |s1 − s2| < 1

2
(ξ1 + ξ2)

}
. That is, at any time t < T , the

midprices of these two assets cannot differ by more than the sum of their half-spreads;

if they do, then one could execute two market orders, for example one order to short

the overpriced futures and the other to purchase the underpriced underlying, and hold

to maturity for an arbitrage.

Given the discussions above regarding the no-arbitrage region, the investor assumes that

for t ∈ [0, T ], the dynamics of the midprice process St is a reflected, correlated, driftless

Brownian Motion. However, the true underlying dynamics of the data generating process

(DGP), which includes adverse selection effects, are discussed in Section 4.4.1 and used

in the simulation study.

Assumption 4.2.4. The n-dimensional midprice process {St}0≤t≤T has the following

dynamics, for t ∈ [0, T ], on the open set A:

dSt = σdBt (4.1)

with σ being an n-by-n matrix with σσ′ being positive definite, {Bt}0≤t≤T is a standard

Brownian Motion on Rn, and St has (normal) reflection at the boundary of A.

When the risky assets possess a structural dependence, as in our illustrative example, the

matrix σ will induce a strong correlation between all or some of the n assets. For example,

the case discussed above consisting of n = 2, a futures contract and its underlying, σ will

induce a strong positive correlation. In general, for assets that exhibit strong structural

dependence, σ will induce movements in the midprice processes that are relatively in

the same direction, on average, to some element of the subspace B⊥ (the orthogonal

compliment of B).

Recall that the agent will be submitting both limit orders and market orders and therefore

needs to model incoming market orders from other participants in addition to her own

executions (which she controls). As such, she assumes that other market participants

send market orders according to independent Poisson processes. The counting processes

representing the total number of market orders submitted by other agents up until time t

are {N−i,t}0≤t≤T for sells and {N+
i,t}0≤t≤T for buys. On the other hand, the total number of

market sells and buys up until time are given by the processes {N−i,t}0≤t≤T and {N+

i,t}0≤t≤T

respectively. It is also convenient to have these processes in the following vector forms:

N±t =
(
N±1,t , . . . , N

±
n,t

)′
and N

±
t =

(
N
±
1,t , . . . , N

±
n,t

)′
. Finally, the total number of

market orders sent by the high frequency trader (HFT) up to time t is N
±
t −N±t .

Thus, Nt =
∑n

i=1

(
N−i,t +N+

i,t

)
is the total number of market orders executed by other
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agents up to time t, and N t =
∑n

i=1

(
N
−
i,t +N

+

i,t

)
to be the total number of market orders

executed by all agents up to time t. It is also convenient to have these processes in the

following vector forms: N±t =
(
N±1,t , . . . , N

±
n,t

)′
and N

±
t =

(
N
±
1,t , . . . , N

±
n,t

)′
. Thus,

the total number of market orders sent by the market maker up to time t is N t −Nt.

The investor sends LOs to the limit order book (LOB) at depth δit, i = 1, · · · , n, and

we summarize this information in the (2n-dimensional) vector-valued process {δt}0≤t≤T .

Here we use the convention that LO depth is from across the book ; the limit buy order

is measured from the best offer, and the limit sell order is measured from the best bid

quote. Therefore, the investor’s buy LOs would be posted at St + ξ/2 − δ−t , and her

sell LOs would be posted at St − ξ/2 + δ+
t . In addition, the running counts of the in-

vestor’s filled LOs are given by the processes {M+
i,t}0≤t≤T and {M−

i,t}0≤t≤T for sell and buy

orders, respectively, and we summarize this information in the vector-valued processes

{M+
t }0≤t≤T and {M−

t }0≤t≤T . This allows the investor to post inside the spread.41 With

this in mind, the investor’s buy LOs would be posted at St + ξ/2− δ−t , and her sell LOs

would be posted at St − ξ/2 + δ+
t .

Assumption 4.2.5. The fill rate functions for asset i = 1, . . . , n, as measured from

“across the book”, and denoted h±i (δ), satisfy h±i (0) <∞, h±i (ξi) = λ±i , and lim
δ→∞

δh±i (δ) =

0. Furthermore, h±i ∈ C1
(
[0,∞)

)
with h′ < 0.

The investor gets filled when MOs arrive and reach the level that the limit quote is

posted at. More specifically, the deeper in the book the agent posts, the less frequent

she gets filled by a matching MO; a dependence that is captured by the functions h±i (δ).

This is in line with how a number of other authors have modeled optimal postings and

fill probabilities as in Ho and Stoll (1981), Avellaneda and Stoikov (2008), Bayraktar

and Ludkovski (2012), Cartea and Jaimungal (2013b) and Guéant et al. (2013). This

approach can be viewed as a reduced form one, in contrast to models which focus on

modeling the dynamics of each level of the LOB, together with market order arrivals

(see, e.g., Roşu (2009) and Cont et al. (2010)).

We may suppress the ± and i clarifiers on the function h and the scalar variables λ, κ

(defined in Example 4.3.3), δ, and ξ, when it is clear which element is being represented.

41Inside the spread refers to LOs that improve upon the current best bid or offer.



Chapter 4. Algorithmic Trading in Multiple Assets 62

4.3 The HFT’s Optimization Problem

4.3.1 Statement of the Problem

Recall that δt is the depth, as measured from across the book, at which the investor sends

quotes to the LOB. Let (τ ; ς) = {τ1, τ2, . . . ; ς1, ς2, . . . } be an impulse control representing

the investor’s submission of market orders to the LOB. The ordered sequence of uniformly

bounded Ft stopping times, 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ T , is the sequence of times of the market

orders, and the binary sequence ς1, ς2, . . . indicates whether the MO was a buy or a sell

order. Recall that the filtration {Ft}0≤t≤T is generated by the processes St, M±
t , N±t , N

±
t .

The cash process of the investor is then given by

dXt = (St − ξ/2 + δ+
t−) dM+

t − (St + ξ/2− δ−t−) dM−
t

+ (St − ξ/2) d(N
−
t −N−t )− (St + ξ/2) d(N

+

t −N+
t ) ,

(4.2)

where St, δ
−
t , δ+

t , and ξ are all n-dimensional row vectors, and M−
t , M+

t , N−t , N+
t , N

−
t ,

and N
+

t are all n-dimensional column vectors.

The terms in the first line in (4.2) of the cash process account for the changes in cash due

to filled limit sell and buy orders and the terms in the second line account for changes in

cash due to the investor’s own market sell and buy orders.

The investor seeks the strategy
(
{δt ≥ 0}0≤t≤T , τ , ς

)
which maximizes her expected

terminal wealth while penalizing and constraining inventories, where δt is a bounded, Ft
previsible function representing the LO quote depths, τ is an increasing sequence of Ft
stopping times representing the times of MO submissions, and ς is the binary sequence

of buy/sell indicators. The collection of all such strategies is called the admissible set

and denoted by X .

Thus, for 0 < T � T , the investor solves the control problem

Φ(t, x, s,q) = sup
(δt, τ , ς)∈X

E(t,x,s,q)

[
XT +

n∑
i=1

qiT

(
SiT−sign(qiT )

ξi
2
−γqiT

− φ T∫
t

`(qu) du

 (4.3)

where γ ≥ 0, φ ≥ 0, qt = (q1
t , . . . , q

n
t ) is the investor’s inventory at time t, and `(·) ≥ 0

is an instantaneous inventory penalty.

In Equation (4.3), we have included two inventory penalties. The first of which is a

cost that the investor incurs to unwind terminal inventory and the other is a running
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inventory penalty which is used to control the strategies exposure to inventory risk, but

not a financial cost. When the strategy reaches its terminal time T , inventories must be

liquidated. To do so the investor uses a market order that crosses the spread, picks up

the cost ξi/2, and walks down one side of the LOB where these costs are given by the

linear “market impact” term γqiT .

On the other hand, the running inventory penalty φ
T∫
t

`(qu) du is imposed by the investor

to adjust the strategy’s exposure to inventory risk, see Cartea and Jaimungal (2013b)

and Cartea et al. (2013). Here we assume that

`(q) = V
[
q · Ŝ1

]
= q′σσ′q , (4.4)

where {Ŝt}0≤t≤T is the unreflected version of {St}0≤t≤T .

A priori, it is unclear why the unreflected version of St in the penalty function (4.4)

is used. Classical mean-variance portfolio optimization problems penalize according to

the variance of the terminal profit and loss (PnL). However, such a penalty fails to

characterize how much inventory risk was taken on by the investor throughout the entire

life of the strategy. In light of this shortfall, we take the penalty to be the intra-trade

quadratic variation of the investor’s portfolio, similar to what was done in Forsyth et al.

(2012), which is a natural characterization of the total risk taken on by the investor.

The following observation gives a mathematical justification for the use of the inventory

penalty in (4.3).

Observation 4.3.1. For 0 ≤ u ≤ v ≤ T , we have the following equivalence (P almost

surely):

v∫
u

V[qt · Ŝ1]dt = 〈q · S〉v − 〈q · S〉tNv +
Nv∑

k=Nu+1

{
〈q · S〉tk− − 〈q · S〉tk−1

}
(4.5)

where tk is the time of the kth market order, tk− is the left limit at tk, and 〈 · 〉t is the

quadratic variation operator.

The relation in (4.5) is also highlighted in Cartea and Jaimungal (2013b) where the

authors offer a similar relation for the one-dimensional case. Thus, the trader penalizes

the strategy with the “variance per second” of her current portfolio, which gets scaled by

φ ≥ 0 according to her risk tolerance. In a single asset economy, this penalty reduces to∫
q2
udu (up to a multiplicative constant), which has been shown in Cartea et al. (2013)

to stem from ambiguity aversion the drift of the midprice process.
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4.3.2 Solving the Value Function

By appealing to Øksendal and Sulem (2007) and the results in Appendix B.1, the value

function Φ(t, x, s,q), as defined in (4.3), then satisfies the following HJBQVI on the

no-arbitrage region A:

max

[
sup
δ>0
{(∂t + L)Φ +

∑
i

h−i (δ−i )∆−i Φ +
∑
i

h+
i (δ+

i )∆+
i Φ− φ `(q)} ;

max
i ,±
{Φ(t, x± si − ξi/2, s,q∓ ei)− Φ}

]
= 0

(4.6)

with time boundary condition Φ(T, ·) = x +
n∑
i=1

qi
(
si − sign(qi)

ξi
2
− γqi

)
, the Neumann

condition on the boundary of A

∂Φ

∂n
= ∇Φ · n = 0 , (4.7)

where n is the normal vector to ∂A, and the infinitesimal generator L of the n-dimensional

correlated Brownian Motion is given by 1
2

n∑
i,j=1

[σσ′]ij
∂2

∂si∂sj
.

Moreover, here we use ∆±i to denote the difference operator

∆±i ϕ(t, x, s,q) = ϕ
(
t, x± si ± δ±i ∓ ξi/2, s,q∓ ei

)
− ϕ(t, x, s,q)

where ei is a vector with 1 in the ith position and 0 elsewhere, and dependence on δ

is suppressed for convenience. For example, ∆−i ϕ denotes the change in ϕ due to the

investor’s limit buy order being filled: inventory for asset i increases by 1, and cash x

decreases by the cost of the transaction si− δ−i + ξi/2. The interpretation for ∆+
i ϕ when

the investor’s limit sell order is filled has a similar interpretation.

Lemma 4.3.2. If the the midprice process is in the no-arbitrage region (i.e. s ∈ A), then

the supremum term in (4.6) is equal to the sum of the supremum over each component.

Proof. The supremum operator satisfies countable sub-additivity. Equality comes from

the fact that the 2n variables being optimized appear exactly once in all of 2n distinct

additive terms.

We apply the following ansatz for the value function

Φ(t, x, s,q) = x+ q · s + g(t, s,q) , (4.8)
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and recalling that h(δ) is the fill rate function facing the investor for an LO placed at

depth δ, the first order condition for each component of δ in the continuation region is

given by

h′(δ±,∗i )

(
δ±,∗i − ξi

2
+ ∆±i g

)
+ h±i (δ±,∗i ) = 0. (4.9)

The implicit form in Equation (4.9) is then used to simplify (4.6) and obtain a new QVI

for g(·):

max

[
(∂t + L)g −

∑
i,±

(h(δ∗))2

h′(δ∗)
− φ `(q) , max

i ,±
{∆±i g − ξi/2}

]
= 0 (4.10)

with boundary conditions g(T, ·) = −
∑
qi
(
sign(qi)

ξi
2

+ γqi
)

and (q+∇g) ·n = 0 on ∂A.

In order to obtain an explicit form for δ∗ (in feedback control form), we further assume

that h(δ) is exponential.

Example 4.3.3. Exponential Fill Rate. Suppose that market orders arrive to the

market according to a Poisson process and the probability of being filled decays exponen-

tially.42 More precisely, h±i (δ) = λ±i e
−κ±i (δ−ξi) with 0 < κ±i ≤ 1

ξi
.

Example 4.3.3 provides an additional modeling assumption43 on the fill rate facing the

investor that will be used in all numerical demonstrations throughout this chapter. The

additional condition that κ±i ≤ 1
ξi

is imposed so that the risk-neutral investor following

an optimal market making strategy does not post limit quotes inside the spread. This

condition is consistent with what is observed in the market as the smaller the bid-offer

spread, the more volume rests in the LOB. This corresponds to higher values of κ±i .

In this exponential fill rate setting, we have

δ±,∗i =
1

κ±i
+
ξi
2
−∆±i g, (4.11)

and Equation (4.10), in the continuation region, further reduces to

gt +
1

2

n∑
i,j=1

[σσ′]ij
∂2g

∂si∂sj
+
∑
i,±

λ±i
κ±i

exp

{
−1 +

κ±i ξi
2

+ κ±i ∆±i g

}
− φ `(q) = 0 . (4.12)

The optimal LO depth has two main components. The first is given by the two first terms

42Exponentially decaying fill probability is implied by the stronger modeling assumption that MO
volumes are iid exponential random variables and that the LOB volume is flat.

43It is also common for a power law function to be used as the fill rate function.
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on the right-hand side in (4.11) which is the optimal depth chosen by an investor who

does not impose any inventory penalty, nor does she pick up any costs for unwinding

terminal inventory, γ = φ = 0. The second component, given by the third term on

the right-hand of the equation, is a correction to the optimal posting to account for the

adjustment to the LO depth as a result of the investor’s inventory management strategy.

Proposition 4.3.4. The max
i ,±
{∆±i g− ξi/2} terms in the QVI (4.10) give rise to the LO

spread bounds 1
κ±i

< δ±i ≤ 1
κ±i

+ ξi for each i = 1, . . . , n.

When considering δ−, the stated lower bound is because the agent is eager to obtain

another unit of the asset. Therefore, rather than posting an LO at the strict lower

bound of 1/κ±i , she executes an MO. The upper bound corresponds to posting at a

deep level (since the investor does not want the asset), and if the LO is filled, the agent

immediately posts an MO to unwind and attempts to make a profit. Profits in this case

are not guaranteed and will depend on the resilience of the LOB. Note that δ−i (q) is

arbitrarily close to 1/κ±i if and only if δ+
i (q + ei) is close to 1

κ±i
+ ξi and similarly, δ+

i (q)

is arbitrarily close to 1/κ±i if and only if δ−i (q− ei) is close to 1
κ±i

+ ξi.

We proceed to numerically solve the QVI given in (4.10) for the special case of exponential

fill rate function, h(·). The discussion regarding the exact numerical scheme is postponed

to Section 4.5, where we take advantage of a dimensional reduction in the spacial variables

and also prove that the scheme converges to the unique viscosity solution.

4.3.3 Analysis of the Optimal Trading Strategy

We use our 2-dimensional illustrative example to explore the behaviour of the opti-

mal strategy. Recall that the first asset S1
t is a traded equity and the second second

asset, S2
t , is a T -maturity futures contract written on S1

t . In this economy, we have

V [(1 , −1)′ · ST ] = 0, yielding a market that is over-complete. To this end, we take

b = (1 , −1)′ as the basis of B for this illustrative example, and other parameters are

given in Table 4.1.

For simplicity, we assume that the fill rates on both sides of the LOB are the same (see

Table 4.1) and that the arrival of buy and sell MOs are also the same, but both the

fill rate parameter and arrival of MOs differs across the two assets. For example, the

underlying equity S1
t is modeled with a higher rate of incoming market orders than S2

t

which is the T -maturity futures contract. This is because the underlying trades more

actively than the first nearby futures and so we assume that there is more liquidity in
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Parameter Value

φ 1

σ

(
0.005 0.009

0 0.015

)
γ 0.001

ξ1 = ξ2 0.02
λ−1 = λ+

1 1.2
λ−2 = λ+

2 1.0
κ−1 = κ+

1 40
κ−2 = κ+

2 25
T − t 60

Table 4.1: Model parameters used in the analysis of the function g(t,q, s), the con-
tinuation region, and the optimal inventory level. Recall that the fill rate assumption
h±i (δ) = λ±i e

−κ±i (δ−ξi) from Example 4.3.3 is being made.

the equity than the futures by taking κ±1 > κ±2 .44

Finally, note that because ξi > 0, we do not require their correlation to be 1 or even

for their volatilities to be the same. However, it makes intuitive financial sense for their

volatities to be similar and for their correlation to be positive. This leads to our choice

of volatility matrix, σ, which induces a correlation of approximately 0.87. The total

volatility of Asset 1 turns out to be less than that of Asset 2. The rationale behind this

is that the sources of quadratic variation of the futures contract not only includes the

underlying equity (Asset 1), but also with that of interest rates and stochastic volatility

(which affects the futures price via the convexity correction; see Hull (2014)). So the

futures contract should then have a larger total volatility than its underlying.

For a fixed time t, Figures 4.1(a) and 4.1(c) show g(t, s,q) as a function of q for fixed

s = (100, 100). It is clear that it attains its maximum at q = (0, 0). The asymmetry in

g with respect to inventory is due to the fact that the risk associated with a single unit

of Asset 1 is less than that of Asset 2. Furthermore, portfolios of the form (a, b) with

sign(a) 6= sign(b) are less risky than portfolios with sign(a) = sign(b) as the two assets

are strongly positively correlated. This is depicted in the dark blue regions in the upper

right and lower left corners of Figure 4.1(c), which corresponds to large long positions

and large short positions in both the assets, respectively.

The left and right panels of Figure 4.1 show g(t, s,q) as a function of q for two different

44Although this is true for equities, there are cases (such as commodities) when a future’s underlying
does not actively trade or is a non-traded asset (e.g., electricity).
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Figure 4.1: g surface for various s. Figures 4.1(a) and 4.1(c) show the surface and
heatmap, respectively, of g(t, s,q) when the assets’ midprices are equal. Figures 4.1(b)
and 4.1(d) show the surface and heatmap, respectively, of g(t, s,q) when Asset 1 is cheap
relative to Asset 2 (s1 = s2 − 0.012).

values of s1−s2. When s1 = s2, the maximum of g(t, s,q) is again obtained at q = (0, 0).

However, this is no longer the case when s1 6= s2. When s1 < s2, the investor would

rather be long Asset 1 and short Asset 2, and she will post LOs in a way that reflects

this desire to hold such an inventory. This is because the process S1
t − S2

t is bounded

from below by the sum of the assets’ half-spreads. Hence, when this process is near the

lower boundary, there is the potential for profits as we have assumed reflection on this

boundary.

Figure 4.2 shows how the continuation region also depends on s1−s2. When s1 = s2, the

continuation region is centered around the origin, just as one would expect. However,

when one asset is cheap relative to the other, i.e. s1 < s2, then the agent prefers to



Chapter 4. Algorithmic Trading in Multiple Assets 69

−40 −20 0 20 40
−40

−20

0

20

40

q1

q
2

(a) s1 = s2

−40 −20 0 20 40
−40

−20

0

20

40

q1

q
2

(b) s1 < s2

Figure 4.2: Continuation region for various s. The different coloured regions correspond
to different MO submissions. Namely, light blue: Asset 1 buy MO; orange: Asset 1 sell
MO; dark blue: Asset 2 buy MO; burgundy: Asset 2 sell MO; green: continuation region;
and white: unattainable. Recall that Figure 4.2(b) is specified by s1 = s2 − 0.012.

long Asset 1 and short Asset 2 in an attempt to profit when Asset 1 increases relative to

Asset 2. Furthermore, she will be aggressive and execute MOs if she is caught holding a

portfolio that is short Asset 1 and long Asset 2 when this shift in the midprices occurs, as

demonstrated by the absense of the continuation region in the upperleft corner of Figure

4.2(b). As the price discrepency becomes larger, the investor adjusts her strategy to

accumulate inventory in a way that positions her to profit from these market conditions.

As discussed earlier, inventory control plays a critical role in high frequency trading.

The investor actively tries to liquidate outstanding long positions and cover outstanding

short positions. In a single asset scenario, the logistics behind this are clear. However,

in a multiple asset setting with correlated assets, the investor may attempt to partially

hedge a long position in one asset with a short position in another asset that is positively

correlated.

Corollary 4.3.5. Mean Reversion of Inventory. Given the optimal strategy δ∗, the

expected drift of the inventory process qt inside the continuation region is given by

lim
u→t+

1

u− t
E[qu − qt | Ft] =

[
λ−i h

−
i (δ−i,t)− λ+

i h
+
i (δ+

i,t)
]
i
. (4.13)

Proof. By observing that each element of δt is a right continuous with left limits (RCLL)

function of t (for fixed ω ∈ Ω), we can conclude that the expected drift in inventories

inside the continuation region is given by the difference in the arrival rates of filled LOs

at time t.
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Figure 4.3: Inventory drift when the investor is flat (i.e., q1 = q2 = 0).

Figure 4.3 shows the inventory drift as a function of the midprice s. When the trader is

flat (holding zero inventory) and Asset 1 is cheap relative to Asset 2 (i.e. when s1− s2 is

small), she wants to acquire a long position in Asset 1 and short position in Asset 2. The

corresponding drifts in the q1
t and q2

t processes become more pronounced as the inventory

penalty parameter φ decreases.

Figures 4.4 and 4.5 show the drift in the process qt as a function of the current inventory

q for fixed values of s1 − s2 (and φ = 1 as taken in previous plots where not explicitly

stated). The inventory will be attracted to the curve where the reversion rate is 0

(coloured green). Notice how in each figure the qi process is attracted to a curve and

not a point. More specifically, for each value of q, the component qi is attracted to a

particular point that depends on the values of the other components of q. When q1 = 0

and s1 = s2, then the optimal amount of Asset 2 to hold is 0. However, when q1 > 0,

then the optimal amount of Asset 2 to hold is less than 0. This highlights the behaviour

that the investor tries to partially hedge a long position in one asset by acquiring a short

position in the other (as well as try to reduce the long position in Asset 1 as well).

The intersection point of the corresponding attraction curves for q1 and q2 then acts as

the attraction point for the vector-valued inventory process qt. Figure 4.6 is a graphical

depiction of this attraction point as a function of s1 − s2.
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Figure 4.4: Inventory drift when the assets’ midprices are equal (i.e., s1 = s2).
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Figure 4.5: Inventory drift when Asset 1 is cheap relative to Asset 2 (i.e., s1 = s2−0.012).
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Figure 4.6: Mean reversion point of q as a function of s1 − s2. The red (blue) dots
correspond to small (large) values of s1 − s2.
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Parameter Value

T 300
φ 0.3, 1, 3, 10, 30, 100, 200

σ

(
0.005 0.009

0 0.015

)
γ 0.001

ξ1 = ξ2 0.02
λ−1 = λ+

1 1.2
λ−2 = λ+

2 1.0
κ−1 = κ+

1 40
κ−2 = κ+

2 25

ζ

(
2 0
0 2

)
ρ 0.40, 0.50, 0.60
ε 0, 0.01, 0.02, 0.04

Table 4.2: Model parameters used in the simulation study. Recall that the fill rate
assumption h±i (δ) = λ±i e

−κ±i (δ−ξi) from Example 4.3.3 is being made.

4.4 Simulation Study: PnL of the Strategy

In this section, we use simulations to analyze the financial performance of an investor who

follows the optimal strategy previously discussed. We use the time limiting strategy for

T − t large since the convergence to the limiting strategy occurs quite quickly (typically

within 15-30 seconds). The investor’s operating frequency is every 5 milliseconds, the

maximum amount of inventory the investor can hold long or short45 is Q = 40 for each

asset, and the trading horizon is T = 300 seconds. Other model parameters are provided

in Table 4.2. Recall that the assumption h±i (δ) = λ±i e
−κ±i (δ−ξi) from Example 4.3.3 is

being made.

4.4.1 Accounting for Adverse Selection

As outlined in Section 3.4, to not include adverse selection effects in the data generating

process of our simulation study would be to ignore a fundamental and prominent feature

45This bound on the investor’s inventory only plays a role in the numerical solution of the value
function. Depending on the penalty parameter φ > 0, the exact strategy will dictate uniform (over
time and Ω) bounds on the investor’s inventory since the continuation region is bounded, as argued in
Appendix C.6. This is visually depicted in Figure 4.2 where the optimal strategy keeps inventory inside
the rhombus shaped region.
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of market microstructure. Hence, to analyze the strategy under more realistic scenarios,

we assume that an important source of risk faced by the investor is adverse selection.

The investor might be trading with better informed counterparties and therefore faces

the risk of buying assets right before prices drop or selling assets right before prices rise.

In our analysis, we include adverse selection by assuming that some MOs will affect the

midprice of the asset.

With this in mind, we suppose that a MO originates from one of two sources. It was

either executed by an informed trader, or an uninformed one. We assume that the

probability that any particular MO comes from an informed trader is constant, and we

shall denote this probability by ρ. We describe the two possible effects by example.

Suppose the current best bid-offer (BBO) quotes for Assets 1 and 2 are 100.00/100.02

and 100.01/100.03, respectively. A large buy MO on Asset 1 arrives, widening the spread

to 100.00/100.06. At this point, one of two things will happen immediately:

• The MO was executed by an informed trader: The BBO quotes for Asset 1 becomes

100.04/100.06, giving an immediate impact of $0.04. This impacts Asset 2 in the

same way causing the BBO to move to 100.05/100.07. The informed trader knows

that there will be upward pressure on the price, and some other informed market

participants (on both assets) move their current quotes to reflect this.

• The MO was executed by an uninformed trader: The BBO quotes for both assets

remains unchanged. There is nothing special about this MO, and the depleted

portion of the LOB refills with quotes.

This describes the immediate effect on the midprice process and made explicit in the

SDE in (4.14).46 Before we turn our attention to the persistent effect, some notation is in

order. We define the vector-valued processes {N̂−t }0≤t≤T and {N̂+
t }0≤t≤T to be the total

number of informed market sell and buy orders up to time t, respectively, with the ith

component representing Asset i. The persistent impact of an informed MO will come via

a change in drift of the midprice process, St. For each asset, we also have the following

dynamics for the midprice process St:
dSt = αtdt+ σdBt + d(Nt−+1)

(
1 1

1 1

)
d
(
N̂+
t + N̂−t

)
dαt = −ζ αt dt+ e(Nt−+1) Ψ d

(
N̂+
t − N̂−t

) (4.14)

where St has (normal) reflection at the boundary of A, ζ and Ψ are n×n matricies with

46Since all of these effects occur simultaneously (or faster than the HFT can respond), this model does
not admit latency arbitrage.
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non-negative entries, d(1), d(2), . . . is the sequence of random variables representing imme-

diate market impact (will be non-negative for market buy orders and non-positive for mar-

ket sell orders), and e(1), e(2), . . . is an iid sequence of exponential random variables with

mean 1. Note that because the immediate market impact term adds a random multiple of

(1, 1)′ to St, the resulting value of the midprice vector is guaranteed to remain inside the

no-arbitrage region A (recall from Section 4.2 that A =
{
s ∈ R2 : |s1 − s2| < 1

2
(ξ1 + ξ2)

}
)

and α1
t = α2

t (which will be denoted αt). Equation (4.14) is the natural multivariate ex-

tension of the drift dynamics presented in Cartea et al. (2014).

When an informed buy MO arrives on Asset i, then there will immediately be a jump

in αt equal to the ith column of Ψ multiplied by a random expontial random variable.

The matrix ζ serves as the decay matrix which forces each component of the process αt
to mean revert to zero. The effect of an informed sell MO is similar, except it induces a

negative jump in αt.

Observe that we are using dN̂±t instead of dN±t or dN
±
t in (4.14). This has the interpreta-

tion that only the MOs of informed traders will have an impact on αt. Furthermore, our

own market orders do not move the market, unlike the informed traders’ MOs, as our MOs

are quite small in size and we are a small player without superior market information.

For the purposes of illustration, we make the further assumption that Ψ = ε

(
1 1

1 1

)
,

where ε ≥ 0 is a scale parameter.

Figure 4.7 shows sample paths for the midprice process St and its drift process αt.

Observe the jumps in both the midprice process and the short term drift due to adverse

selection. On this particular time window, Asset 1 is priced lower than Asset 2. Observe

in Figure 4.7(c) how the midprice spends most of the time near the upper boundary. It

will be shown in Section 4.5.1 that g is only a function of s through the function s1− s2.

We provide a sample path of this process in Figure 4.7(d). Again, notice that on this

particular window S
(1)
t −S

(2)
t < 0, but still obeying the bound S

(1)
t −S

(2)
t > −1

2
(ξ1 +ξ2) =

−0.02.

Notice how the investor’s buy LO quote for Asset 1 (as depicted in Figure 4.8(a)) varies

as the process S
(1)
t − S

(2)
t varies over time in Figure 4.7(d). The discrete jumps in δ−1,t

are due to the state variable s1 − s2 moving to another (discrete) grid point (recall that

g(t, s,q) was solved numerically on a sparse grid for the spatial variable s). In this plot,

the cheaper Asset 1 is relative to Asset 2 (i.e. when S
(1)
t − S

(2)
t is close to -0.02), the

more willing the investor is to acquire an additional unit of Asset 1. Hence, she posts

her limit buy quote closer to the best bid for Asset 1 and her limit sell quote closer to

the best offer for Asset 2. Along this sample path, the investor managed to acquire a

long position in Asset 1, as shown in 4.8(b), and is using her short position in Asset 2 to
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Figure 4.7: Sample paths of the midprice process St and drift process αt. The red lines
in Figure 4.7(c) represent the boundary of the no-arbitrage region.

partially hedge away the risk associated with being long the underlying equity.

Although these adverse selection effects are present in the DGP, the trader cannot esti-

mate the correct drift of the asset so she assumes that it is zero. Recall that the investor

assumes that the dynamics of St are given by Assumption 4.2.4, and that this was the

assumption used when solving the stochastic control problem in Section 4.3.1.

4.4.2 Results of the Simulation Study

Here we show how the investor’s strategy performs when we vary the running inventory

penalty φ and her exposure to adverse selection by varying the scale parameter ε. The

investor starts with zero inventory in both assets and will trade for T = 300 seconds. We
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Figure 4.8: Sample paths of the investor’s LO depth and her inventory level for φ = 10.

run 2,500 simulations and record the PnL for each run. Figure 4.9 provides histograms

depicting the distribution of the terminal PnL for two levels of running inventory penalty.

In Figure 4.9(a) we assume that the investor is not exposed to adverse selection costs

by assuming ε = 0 and in Figure 4.9(b) we show the histogram of the PnLs when the

investor is exposed to adverse selection effects by setting ε = 0.02.

However, when we increase the scale parameter ε in the jump size of the short term

drift process, we can observe that the less inventory averse investor does not necessarily

outperform her more inventory averse counterpart. This is due to the behaviour that the

less inventory averse investor is willing to hold larger inventories for a longer period of

time which further exposes her to the drift of St, while the more inventory averse investor

cuts her losses early in an attempt to reduce inventory risk. The ε = 0.04 case in Figure

4.10 illustrates this result very well.

There is some debate about which risk metric better characterize the riskiness of the

strategy. Classical work in finance is typically only concerned with the terminal distribu-

tion of PnL (at time T ); namely, its variance (or standard deviation) and possibly higher

moments that give information about the weight of the tails. However, considering the

penalty term in (4.3), we see that we are concerned with the optimal portfolio’s risk

throughout the entire time interval [0, T ], not just at the end. To this end, we classify a

strategy’s riskiness via the penalty
∫ T

0
`(qu)du and consider the mean of this quantity.

This is what is termed mean inventory risk.

Figures 4.10 and 4.11 provide efficient frontiers comparing expected PnL against both

standard deviation of PnL and mean inventory risk for a variety of adverse selection pa-

rameters (ε and ρ, respectively). Decreasing φ (i.e. increasing risk appetite) corresponds
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(a) ε = 0 (b) ε = 0.02

Figure 4.9: Distribution of terminal profit and loss. The probability of an informed MO
is fixed at ρ = 0.50.
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(b) Mean PnL vs Mean Inventory Risk

Figure 4.10: Performance of strategy for various φ with different drift impact scale pa-
rameters ε. The probability of an informed MO is fixed at ρ = 0.50.

to moving in the rightward direction of this plot. As stated in Table 4.2, φ ranges from

0.3 to 200.

Recall that the investor assumes that the drift of St is zero, when in fact there are adverse

selection effects. As outlined in detail in Section 4.4.1, we have a scale parameter ε ≥ 0

that represents the magnitude of such effects. The larger the parameter, the stronger the

effects of adverse selection are in the market. It is clear from Figure 4.10, that adverse

selection generally has a negative effect on the investor’s PnL, which is consistent with

the results in Section 3.6 for the market maker that cannot detect influential MOs. In

the extreme case of ε = 0.04, these effects are so strong that decreasing the investor’s
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Figure 4.11: Performance of strategy for various φ with different probabilities of informed
MOs ρ. The drift impact scale parameter is fixed at ε = 0.01.

inventory aversion actually decreases return because she is allowing her portfolio to be

exposed to these effects for a longer period of time.

Up until this point, we have assumed that 50% of all incoming MOs are influential and

thus have an impact on the drift of the midprice. Recall that MOs of this type have two

effects: an immediate effect and a persistent effect. If we increase the probability ρ that

an MO comes from an informed trader, then this will directly translate into an increase

in the number of MOs that immediately move the market. Because this movement is

always against the investor when her LO is filled, it will always have a negative impact on

her PnL (in contrast to increasing ε where this was not the case). The resulting efficient

frontiers are reported in Figure 4.11 for three differing values of ρ.

We observe in Figure 4.12 that the larger the inventory penalty parameter φ is, the more

MOs are executed by the trader.47 We obtain this result because larger φ means that

the trader imposes a higher penalty on running inventory, which induces higher mean

reversion in inventories. This is attained by adjusting the LOs accordingly and executing

more market orders. Alternatively, one can also see that the larger φ is, the smaller the

continuation region, so the boundary gets breached more often inducing MOs that force

the investor to cross the bid-ask spread to bring q back into the continuation region.

Although there is symmetry between the buy and sell sides of the LOB, there is an

intuitive explanation for the drastic difference in number of executed MOs between the

47It was brought to the author’s attention that just submitting MOs is counter-intuitive to the notion
of market marking. To clarify, LOs are still an integral part of this investor’s strategy. Moreover, if the
control problem is solved with just the execution of MOs, then the optimal strategy is to do nothing.
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(a) Asset 1 – Market Buy (b) Asset 1 – Market Sell

(c) Asset 2 – Market Buy (d) Asset 2 – Market Sell

Figure 4.12: Distribution of the number of executed MOs for various inventory penalty
levels when ε = 0.01 and ρ = 0.50.

two assets. This is simply due to the fact that Asset 2 has a higher total volatility,

which increases the penalty for holding a position in it. Hence, the continuation region

is smaller in the q2 direction than in the q1 direction (as seen in Figure 4.2).

4.4.3 Comparison to Other Strategies

As mentioned previously, the simplified economy consisting of correlated assets without

being over-complete is a special case of the framework that is presented in this chapter.

There are many simplifications in this case, a particularly important simplification is

that, in this case, g would be independent of s (i.e. dimB = 0) since the no-arbitrage

region is all of Rn. Such an economy does not admit a non-zero vector b and time T
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Figure 4.13: Comparison of efficient frontiers for the full strategy (solid lines), the no
boundary strategy (dashed line), and the single asset benchmark (dotted line). The blue
curves refer to ε = 0 and the red curves refer to ε = 0.02. In both cases, ρ = 0.50.

such that V [b · ST ] = 0. In what follows, we investigate the PnL of the investor who

trades as if the assets are correlated, but ignores the no-arbitrage boundaries. However,

the DGP will be one in which the assets do indeed reflect into the no-arbitrage region.

We call this the no boundary case.

A second alternative strategy is that of an investor who makes markets in each asset

individually and is ignorant of the co-dependence between the assets through their corre-

lation and the reflection into the no-arbitrage region. That is, she treats each asset as its

own isolated 1-asset economy. This strategy is referred to as the single asset benchmark

and is exactly the strategy of Section 2.4.

Figure 4.13 compares the multi-asset strategy, with and without considering reflection at

the boundaries, as well as the single asset strategies. Observe the marginal gain in the

no boundary case over the single asset benchmark. This illustrates the value in using

the correlation between the assets to offset some of the inventory risk, in particular for

medium to large values of φ.

More prominent in Figure 4.13 is the effect on PnL due to the investor considering the

no-arbitrage boundary and adjusting her LO quotes accordingly. Observe the gain in

mean PnL (for the same level of risk) for the full strategy over the no boundary strategy.

This supports the conclusion that there is value in the consideration of the no-arbitrage

region in over-complete markets.
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4.5 Numerical Scheme for Exponential Fill Rate

This section outlines the technical details regarding the existence of a unique viscosity

solution (see Appendix B.2) to the dynamic programming equation (DPE), specifies a

dimensional reduction in the spacial variables, gives explicit details regarding the discrete

numerical scheme, and proves that the discretized value function converges to the unique

viscosity solution.

4.5.1 Dimensional Reduction of Spatial Variables

We can use the following lemma to gain a dimensional reduction in the spatial variable s.

Also notice that due to this lemma, the relevant s values now live in a compact domain.

For a fixed error, the total run time will then be proportional to cdimB(2Q + 1)n, where

c is some constant that depends on the spreads ξ1, ξ2, . . . , ξn, the basis vectors that span

B (or equivalently on the number of discrete steps on the dimensionally reduced s-grid),

and Q is the maximum inventory the investor can be long or short for each asset.

Lemma 4.5.1. There exists a C2, surjective function Γ : A −→ A′ ⊂ Rn′ such that:

(I) For all s ∈ A, g(s, ·) = g((Γ(s),0), ·).

(II) s ∈ ∂A ⇐⇒ Γ(s) ∈ ∂A′.

(III) A′ is the cartesian product of closed, bounded intervals.

(IV) dimA′ = dimB = n′.

Proof. See Appendix C.5.

Lemma 4.5.1 states that it is not necessary to know s to get the value of g(s, ·); we only

require the information contained in Γ(s). Furthermore, there exists such a function Γ

that provides a nice, smooth mapping between the original n-dimensional no-arbitrage

region A and the new n′-dimensional no-arbitrage region A′, and that this new region

is a bounded rectangle. The fact that the new region is bounded improves the accuracy

of the numerical scheme in Section 4.5.2 since we no longer have to approximate the

unbounded set A by a bounded one.

There is, however, a minor technical detail that has been overlooked. The form (Γ(s),0),

where 0 is an (n − n′)-dimensional vector of 0’s, requires the assets to be ordered in a
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certain way. In an arbitrary ordering, the components of (Γ(s),0) will need to be re-

ordered. We continue with the labels that produce a simplification of this form as it is

more compact to write (Γ(s),0) instead of having the 0’s in arbitrary positions (i.e. not

consecutive nor all at the beginning or end).

In some sense, Γ(s) is sufficient48 for g. That is, Γ(s) contains the same amount of

information as s when computing g. Furthermore, one could say that Γ(s) is minimal

sufficient since it can be written as a function of any other function of s that is sufficient

for g. Stated heuristically, Γ(s) contains the smallest amount of information about s that

still allows us to know g(s) with certainty. The construction of Γ in the proof of Lemma

4.5.1 is used in what follows to obtain a dimensional reduction, and is given by

Γ(s) = [bj · s]j. (4.15)

In our 2-dimensional illustrative example, we take Γ(s) = s1− s2. For the 3-dimensional

example with two nearby futures and the 1-2 calendar spread, one could take Γ(s) =

s1 − s2 − s3. More details for these two examples are provided in Appendix E.3.

The following Corollary states that the function g is invariant to movements in the

direction of any element of B⊥. This would correspond to vectors of the form (1, 1) in

our illustrative example (i.e. g is remains unchanged when the futures and its underlying

both increase or decrease by exactly the same amount).

Corollary 4.5.2. Dvg = 0 on A whenever v ∈ B⊥.

Proof. Let s ∈ A and v ∈ B⊥. Note that we necessarily have s + v ∈ A by Equation

(C.6) since bi · v = 0 for i = 1, . . . , n′. We then have Γ(s) = Γ(s + v) by (4.15). But

v ∈ B⊥ is arbitrary and B⊥ is a subspace, so one can consider a limiting sequence of the

form {ηk v}, with the scalar sequence ηk ↓ 0, which yields Dvg = 0.

4.5.2 Description of Numerical Scheme

We numerically solve (4.12) by applying upper and lower bounds to each component in

q, and solving the corresponding ODEs backwards in time using an explicit numerical

scheme. For any fixed q, we have an n-dimensional discrete grid to solve for various

48In mathematical statistics, a statistic U is said to be sufficient for an unknown model parameter Θ
if the conditional distribution of the data, conditional on U , is independent of Θ. Heuristically speaking,
U contains the same amount of information about Θ as the data itself.
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values of s. Once we have this grid for each q, we propagate one step backwards in t and

repeat the process.

Define the domain for s, A′ ⊂ Rn′ , on the dimensionally reduced grid. Let Tdt be a

regular partition of [0, T ], Sds be an n′-dimensional regular rectangular partition of the

dimensionally reduced s-gridA′, and YQ be the subset of Zn that corresponds to inventory

with maximum Q as previously described (i.e. YQ = Zn ∩ [−Q,Q]n). Throughout the

rest of this chapter, dt > 0 and ds > 0 refer to the discrete step sizes in the time (t) and

space (Γ(s)) variables, repsectively.

Define, for any function ϕ : [0, T ] × A′ × Zn −→ R, the discrete dynamic evolution

operator

Sdt,ds,Q(t, s,q, ϕ) = max
[
T dt,ds,Q(t, s,q, ϕ) ,Mdt,ds,Q(t, s,q, ϕ)

]
,

with the component corresponding to the continuation region given by

T dt,ds,Q(t, s,q, ϕ) = ϕ+ dt

1

2

n∑
i,j=1

[σσ′]ij T̂ dt,ds,Qij (·, ϕ) +
∑
i,±

λ

κe
exp

{
κξ

2
+ κ∆ϕ

}
− φ `(q)

 ,
T̂ dt,ds,Qij (t, s,q, ϕ) =

ϕ(Γ(si + ds, sj + ds), ·)− ϕ(Γ(si + ds), ·)− ϕ(Γ(sj + ds), ·) + ϕ(·)
ds2

,

and the component corresponding to the impulse region given by

Mdt,ds,Q(t, s,q, ϕ) = max
i ,±
{ϕ(t, s,q± ei)− ξi/2} .

We approximate the solution g by gdt,ds,Q : Tdt × Sds × YQ −→ R defined by:{
gdt,ds,Q(T, s,q) = −

∑
qi
(
sign(qi)

ξi
2

+ γqi
)

gdt,ds,Q(dt · k, s,q) = Sdt,ds,Q
(
dt · (k + 1), s,q, gdt,ds,Q

) (4.16)

We employ an explicit scheme backwards in time as follows:

• When t = T , for each s and q on their respective grids, set

gdt,ds,Q(T, s,q) = −
∑

qi

(
sign(qi)

ξi
2

+ γqi

)
.

• For t < T and s ∈ A′, we perform the following:
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– Compute T dt,ds,Q(t + dt, s,q, gdt,ds,Q) and store the optimal control δ. Some

details for handling the mixed partial term are given in Appendix E.3.1.

– Compute Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q) and store the optimal impulse τ .

– If T dt,ds,Q(t+ dt, s,q, gdt,ds,Q) ≥Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q), then set

gdt,ds,Q(t, s,q) = T dt,ds,Q(t+ dt, s,q, gdt,ds,Q). Otherwise, set

gdt,ds,Q(t, s,q) =Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q).

• For t < T and s ∈ ∂A′, we perform the following:

– Numerically approximate the condition (q + ∇g) · n = 0, similar to what

is done in Appendicies E.3.3 and E.3.4 for the n = 2 and n = 3 examples,

respectively.

4.5.3 Convergence of the Numerical Scheme

We require the following bounds on the value function to ensure the existence of a unique

viscosity solution to the DPE.

Lemma 4.5.3. There exists constants c0, c1, c2 ∈ R such that

x+
∑
i

qi

(
si − sign(qi)

ξi
2

)
≤ Φ ≤ x+ q · s + c0(T − t) + c1‖q‖1 + c2 . (4.17)

Proof. See Appendix C.6.

Similar to Guilbaud and Pham (2013a), we first prove monotonicity, stability, and consis-

tency properties (Propositions 4.5.4, 4.5.5, and 4.5.6, respectively) of the discrete dynamic

evolution operator Sdt,ds,Q(t, s,q, ·). These properties are critical in the proof of Theo-

rem 4.5.7, which states that the solution to the numerical scheme, as given by (4.16),

converges locally uniformly to the unique viscosity solution g(t, s,q).

Proposition 4.5.4. (Monotonicity) For any ds > 0, there exists ht > 0 (depends on

ds) such that for any 0 < dt < ht, Q ∈ N, and ϕ1, ϕ2 ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
with

ϕ1 ≤ ϕ2, we have Sdt,ds,Q(t, s,q, ϕ1) ≤ Sdt,ds,Q(t, s,q, ϕ2).

Proof. See Appendix C.7.
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Proposition 4.5.5. (Stability) For any dt, ds > 0 and Q ∈ N, there exists a unique solu-

tion gdt,ds,Q(t, s,q) to (4.16). Furthermore, the sequence {gdt,ds,Q} is uniformly bounded.

More formally, there exists c0, c1, c2 ∈ R such that for any (t, s,q) ∈ Tdt × Sds × YQ,

−
∑
i

qisign(qi)
ξi
2
≤ gdt,ds,Q(t, s,q) ≤ c0(T − t) + c1‖q‖1 + c2 . (4.18)

Proof. Existence and uniqueness follows immediately from the definition of the explicit

discretization scheme given in (4.16). The upper bound is a direct consequence of Lemma

4.5.3 since gdt,ds,Q(t, s,q) ≤ g(t, s,q) = Φ − x − q · s ≤ c0(T − t) + c1‖q‖1 + c2. The

lower bound is attained by immediate liquidation of the current inventory and then doing

nothing until t = T .

Proposition 4.5.6. (Consistency) For all (t, s,q) ∈ [0, T )×A′ × Zn and

ϕ ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
, we have

lim
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

1
dt

[
T dt,ds,Q(t′ + dt, s′,q, ϕ)− ϕ(t′, s′,q)

]
=

∂ϕ
∂t

+ 1
2

n∑
i,j=1

[σσ′]ij
∂2ϕ
∂si∂sj

+
∑
i,±

λ
κ

exp
{
−1 + κξ

2
+ κ∆ϕ

}
− φ `(q)

(4.19)

and

lim
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

Mdt,ds,Q(t′ + dt, s′,q, ϕ) = max
i ,±
{∆±i ϕ− ξi/2} . (4.20)

Proof. See Appendix C.8.

Theorem 4.5.7. (Convergence) The solution gdt,ds,Q to the numerical scheme (4.16)

converges locally uniformly to the unique viscosity solution g(t, s,q) on [0, T )×A′ ×Zn,

as (dt, ds,Q)→ (0, 0,∞), provided dt < f(ds) for some f : R+ → R+.

Proof. Follows from Propositions 4.5.4, 4.5.5, 4.5.6, and Barles and Souganidis (1991).

For completeness, the details will be provided.

The limits

g∗(t, s,q) := lim inf
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

gdt,ds,Q(t′, s′,q)

g∗(t, s,q) := lim sup
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

gdt,ds,Q(t′, s′,q)
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are lower/upper semi-continuous functions on [0, T ] × A′ × Zn, and inherit the bound-

edness of {gdt,ds,Q} by the stability result in Proposition 4.5.5. It suffices to show (by

symmetry and the strong comparison principle) that g∗ possesses the viscosity supersolu-

tion property. To this end, let (t̄, s̄, q̄) ∈ [0, T )×A′×Zn and ϕ ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
such that (t̄, s̄, q̄) attains the strict global minimum of g∗−ϕ. Then there exists sequences

{(t′k, s′k,q′k)}k in [0, T )×A′ × Zn and {(dtk, dsk, Qk)}k such that

(t′k, s
′
k,q

′
k) −→ (t̄, s̄, q̄) ,

(dtk, dsk, Qk) −→ (0, 0,∞) ,

gdtk,dsk,Qk −→ g∗(t̄, s̄, q̄) ,

and (t′k, s
′
k,q

′
k) is the global minimizer of gdtk,dsk,Qk − ϕ .

Observe that for us to apply the monotonicity result in Proposition 4.5.4, the sequence

{(dtk, dsk, Qk)}k must have dtk sufficiently small for each dsk, as prescribed by (C.9).

Denote the sequence of minimum values {βk}k by βk := (gdtk,dsk,Qk −ϕ)(t′k, s
′
k,q

′
k). Then

we necessarily have the relation gdtk,dsk,Qk ≥ ϕ + βk. Applying the definition of the

numerical scheme in (4.16) and the monotonicity result from Proposition 4.5.4 gives:

βk + ϕ(t′k, s
′
k,q

′
k) = gdtk,dsk,Qk(t′k, s

′
k,q

′
k)

= Sdtk,dsk,Qk(t′k + dtk, s
′
k,q

′
k, g

dtk,dsk,Qk)

≥ Sdtk,dsk,Qk(t′k + dtk, s
′
k,q

′
k, ϕ+ βk)

= Sdtk,dsk,Qk(t′k + dtk, s
′
k,q

′
k, ϕ) + βk

= max
[
T dtk,dsk,Qk(t′k + dtk, s

′
k,q

′
k, ϕ) ,Mdtk,dsk,Qk(t′k + dtk, s

′
k,q

′
k, ϕ)

]
+ βk .

We then have the relation

min

{
1

dtk

[
ϕ(t′k, s

′
k,q

′
k)− T dtk,dsk,Qk(t′k + dtk, s

′
k,q

′
k, ϕ)

]
,

ϕ(t′k, s
′
k,q

′
k)−Mdtk,dsk,Qk(t′k + dtk, s

′
k,q

′
k, ϕ)

}
≥ 0

and applying the consistency result in Proposition 4.5.6 while taking k →∞ finally yields

the viscosity supersolution property

min

[
−∂ϕ
∂t
− 1

2

n∑
i,j=1

[σσ′]ij
∂2ϕ

∂si∂sj
−
∑
i,±

λ

κ
exp

{
−1 +

κξ

2
+ κ∆ϕ

}
+ φ `(q) ,

ϕ−max
i ,±

{
∆±i ϕ−

ξi
2

}]∣∣∣∣
(t̄,s̄,q̄)

≥ 0 .
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4.6 Conclusions

This chapter establishes a rigorous framework for a multiple asset economy that exhibits

a specific type of structural dependence, defined as being over-complete. A parsimonious

model is then built upon this framework that adheres to the strict no arbitrage bounds

dictated by the construction of these assets. It is shown that when these assets have non-

zero bid/offer spreads, the economy no longer contains redundant assets; a fundamental

difference between this framework and classical quantitative finance.

An HFT strategy is developed for the investor that both passively submits LOs and

aggressively executes MOs. The corresponding stochastic optimal control problem is

solved when maximizing expected terminal wealth while penalizing open positions via

the investor’s total portfolio risk at each point in time; the multivariate extension to

penalizing via the squared position in one asset at each point in time. Qualitative features

of the optimal trading strategy are investigated and inventory management is, once again,

demontrated to play a key role in the success of the HFT strategy. More specifically,

the investor actively submits her LO quotes in such a way to manage her inventory and

utilize the instantaneous correlation between multiple assets to partially hedge away the

inventory risk associated with a large open position in a less liquid asset.

Through the use of a simulation study and a 2-dimensional illustrative example, we show

the positive effect that trading multiple assets together, rather than trading each one

seperately, has on the investor’s PnL. By using more liquid assets to partially hedge

away risk, the investor can better manage her inventory risk when market making in a

less liquid asset allowing her to be more aggressive, generate more trade flow and hence,

increase her mean PnL for a fixed level of risk. This tradeoff between mean PnL and

risk, whether it be standard deviation of PnL or mean inventory risk, is highlighted by

varying the inventory aversion parameter φ and constructing the corresponding efficient

frontier.

Moreover, the investor can further enhance profits (or reduce risk for a given level of

mean PnL) when her strategy considers where the midprice process, St, is in the no-

arbitrage region. That is, when she considers the structural dependence in addition to

just considering the multiple assets as correlated Brownian Motions. More specifically,

she adjusts her LO quotes and may submit MOs when the midprice process approaches

the boundary of the no-arbitrage region in an attempt to acquire a directional position

in some particular combination of the assets.

An explicit numerical scheme is provided to solve the derived HJBQVI and convergence

results are discussed to ensure that the given discretization scheme converges to the true
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viscosity solution. Lastly, we derive a dimensional reduction in the spatial variable for the

midprice which significantly reduces the computational time of the numerical solution,

thus making it viable for practical application.



Chapter 5

The Generalized Latent Hawkes

Process

When analyzing event data, many natural systems exhibit large amounts of clustering.

Although there are cases when such behaviour can be explained by poisson clustering49,

there are several others where self-excitation effects are more pronounced and quiet pe-

riods persist far longer. The modeling of self-exciting event data has been attempted in

a variety of disciplines. Notable applications include seismology (see Ogata (1988) and

Vere-Jones (1995) for the modeling of earthquake data), neuroscience (see Chornoboy

et al. (1988) for the modeling of neural activity), genetics and molecular biology (see

Gusto and Schbath (2005) for the analysis of motif occurrences in DNA sequences via

Hawkes processes), and the social sciences (see Mohler et al. (2011) for the modeling of

criminal activity).

As stated earlier, the classical multivariate Hawkes process (Hawkes (1971)) has recently

been used in the financial econometrics literature to model clustering in trade arrival and

changes in the limit order book (LOB), see Large (2007), Bowsher (2007), Shek (2011),

and Toke (2011). Embrechts et al. (2011) improve upon the classical Hawkes model by

introducing dependency in the marks (in the context marked point processes) via copulas.

However, the fact is that most applications of such a process for modeling purposes do

not have marks that are useful for estimating the jump size in intensity as a part of the

observable data. This is the first work to provide statistical estimation methodologies

for a Hawkes model with a random, unobservable, jump size in the intensity process

(or, more precisely, a marked Hawkes process with unobservable marks). The fact that

49Poisson clustering refers to the fact that clusters of events are likely to occur simply by chance, even
when the underlying event arrival rate is constant.

90
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these random jump sizes are latent makes classical likelihood methods computationally

prohibitive.

This chapter is outlined as follows: Section 5.1 motivates this work in the context of

financial microstructure. Section 5.2 presents the model, the form of the data, and some

other probabilistic quantities of interest. Section 5.3 details the first calibration algorithm

which focuses on renewal points (defined in Section 5.2.4) and the isolated likelihood

function (defined in Section 5.3.1). Both asymptotic and sharp analytic bounds on this

pseudo-likelihood function are also provided, as well as a simulation study. Section 5.4

outlines the second calibration algorithm which involves a Sequential Monte Carlo (SMC)

particle filter. Section 5.5 is concerned with the construction of adapted estimators for

the latent intensity process, λt. Finally, Section 5.6 surveys other real-world applications

of the Generalized Hawkes Model within the context of quantitative finance.

Many of the methods derived in this chapter will be put to use on real data in Sections 6.1

and 6.2, and are critical components in the real-world application of the high frequency

trading (HFT) strategy derived in Chapter 3, as will also be applied to real data in Secton

6.3.

5.1 Motivation

As previously eluded to, self-exciting point processes arise in many financial and biological

applications. A point process {Mt}t≥0 is typically referred to as self-exciting if C[Mt+s−
Mt,Mt+s+u−Mt+s] > 0 for all t ≥ 0 and s, u > 0. A particular example of such a process

is the (classical) Hawkes Process where the arrival of each point induces a (constant)

jump in the process’s intensity rate. In many real world applications, the conjecture is

that some points should induce such a (potentially random) jump, while others do not.

In this chapter, we propose such a model and give an efficient calibration algorithm when

the jump indicators are latent.

The main motivation for this work is for application in high frequency trading algorithms.

In particular, the optimal trading strategy derived and discussed in Chapter 3 assumes

that the arrival process of market orders (trades) follows this generalized Hawkes process

with the jump indicator being interpreted as the trade being an influential one. Stated

another way, the jump size random variable is a multiple of a binary random variable.

Observe the fitted intensity in Figure 5.1 (same as Figure 3.1, repeated here for conve-

nience) to Level I financial data50. Notice how the generalized model drastically improves

50Level I data contains event data that corresponds to executed trades with their timestamps and
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(a) Arrival of IBM market buy orders
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(b) Arrival of IBM market sell orders

Figure 5.1: IBM market orders. Historical running intensity versus smoothed fitted in-
tensity using a 1 second sliding window for IBM for a 2 minute period, between 3:30pm
and 3:32pm, February 1, 2008.

the fitted intensity and hence, the need to extend the model beyond the classical Hawkes

model. One key feature is that the generalized model is better at capturing the sharp

spikes in activity that is present in the data. The extremely low values of the historical

intensities are due to the absence of points in the moving window (something that does

not exist in any model with a baseline rate). The key feature that the full model is

attempting to capture is the extreme clustering of events. As you can see in Figure 5.1,

the full model more closely resembles the data generating process in large clusters; this

will be supported with statistical evidence in Section 6.1.

The estimated parameters for the 30 minute window that contains the data in Figure

5.1 can be found in Table 5.1. The larger estimated jump sizes in the full model are

compensated by the probability that not all points induce a jump in the intensity. This

is what creates the sharper peaks when many points are clustered together while still

preserving the overall mean activity rate. By construction of the calibration algorithm in

Section 5.3.2, both methods produce the same fitted value of the long run mean activity

rate lim
u→∞

E[λu|Ft], where the filtration Ft is defined in Section 5.2.2.

volumes.
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Classical Model Full Model

ρ̂ 1 0.6520

β̂1 = β̂2 180.05 195.15
η̂11 = η̂22 64.1589 111.4633
η̂12 = η̂21 55.7357 103.8997

θ̂1 = θ̂2 2.1616 1.8148

Â−1ζ̂ 6.4695 6.4695

Table 5.1: Parameter estimates used for constructing the plots in Figure 5.1.

5.2 The Generalized Hawkes Process

5.2.1 The Model

Let {Nt}0≤t≤T be a n-dimensional vector of counting processes with intensity process

{λt}0≤t≤T satisfying

dλt = β(θ − λt)dt+ η∑
Ni,t−dNt (5.1)

and initial condition λ0 ≥ 0. For any fixed t, assume η∑
Ni,t− is an n × n random

matrix selected from a finite distribution (independent of t), with each possible matrix

having non-negative entries. From this point forward, we will use the short hand ηt when

referring to η∑
Ni,t− and η when referring to a random matrix with the same distribution

(since the distribution is independent of t).

Let p denote the size of the codomain of η and denote each element of η as ηij ≥ 0.

Also, denote the probability weights as ρ =

(
1−

p−1∑
i=1

ρi, ρ1, . . . , ρp−1

)′
. We also have the

constraints θ ∈ Rn has positive entries, β is an invertible n × n matrix with positive

entries, ρ ∈ (0, 1]p with ρ · 1n = 1, and β − E[η] has strictly positive eigenvalues. When

p = 2, we will use ρ when referring to ρ1 as there is only one degree of freedom in the ρ

vector.

The terms in the SDE (5.1) can be interpreted as follows: θ is the baseline intensity

that λt mean-reverts to, and the speed of this mean reversion is dictated by the decay

matrix β. Hence, the term β(θ − λt)dt is responsible for exponential decay to level θ.

The factor ηt is the random jump matrix associated with the event at time t that causes

jump in the intensity process λt and may induce subsequent event arrivals (thus creating

a self-excitation effect).

For each entry ηij of the random matrix, we denote its possible values as ηij(k) for

k = 0, 1, . . . , p − 1 (and the full matrix denoted similarly as η(k)) which has associated
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probability ρk or, in the case of k = 0, has probability 1−
p−1∑
i=1

ρi. It typically makes sense

to force ηij(k) to be monotonic non-decreasing in k, but we do not require this as there

may be some practical applications where having the reversed order for some i, j makes

sense. Finally, observe that since the process Nt ∈ Zn, we only require a countable

number of each of the ηij,· random variables and therefore have no technical issues in

constructing such a well defined probability space.

Observe that if ρ = 1 (and ηij(0) = 0 for all i, j), then the model reduces to a poisson

process. In particular, if λ0 = θ, then the corresponding poisson process is homogeneous.

If ρ = 1 with non-zero η(0), then the model reduces to the Classical Hawkes process where

every event induces a constant jump in λt. Note the self-excitation effect of a jump of

size ηii, as well as the cross-excitation effect of a jump of size ηij (i 6= j) in the other

intensity processes. This simpler model is referred to as the Classical Hawkes Model (or

the ρ = 1 model).

In real world applications, the random matrix η is typically unobservable. However, since

it has a direct effect on the distribution of the point process Nt, we can use statistical

inference to aid in parameter estimation and the likelihood of potential paths of λt.

5.2.2 The Data

We will assume that data (which we aim to calibrate the generalized Hawkes model to)

is provided in the following form: Let T1, . . . , TN denote the inter-arrival times of the

data points. More precisely, each Ti is an element of [0, T ] × {1, . . . , n}, with the first

component being the inter-arrival time of the ith event and the second representing to

which element of the process Nt the arrival point corresponds. Let ti ∈ [0, T ] be the

corresponding ith event time, with the second component being the same as that of Ti.

Define the (completed, right-continuous) filtrations:

F t = σ ({Nu}0≤u≤t) , (5.2)

Ft = F t ∨ σ ({ηu}0≤u≤t) . (5.3)

F t is the natural filtration generated by Nt (i.e. it only contains information about the

arrival of points in Nt), while Ft also contains information about the jump sizes ηt in

the intensity process λt. Conditional on F t, it is not possible to determine the intensity

process on the interval [0, t]; however, expanding the filtration to Ft allows one to extract

the exact intensity path.
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Note that the random jump size ηti is not included in the observable data (that is, we

observe the filtration F t, not Ft). This detail is what sets this work apart from previously

published estimation techniques. Although we do not observe ηti , we can still make

inference about it by observing the effect it has on future event arrivals of the process

Nt for t > ti.

5.2.3 Probabilistic Quantities of Interest

Observation 5.2.1. The solution to (5.1) is given by

λt = θ + e−βt(λ0 − θ) +

t∫
0

e−β(t−u)ηudNu (5.4)

where ηt is shorthand for η∑
Ni,t−.

Applying Itô’s Lemma for jump processes to (5.4) gives Equation (5.1) directly. Also

notice that since Nt is a simple function on compact sets (P - a.s.), the above integral

collapses to a finite sum containing Nt · 1n terms (where 1n denotes the n-dimensional

vector of 1’s), of which only those that have positive jump size are non-zero.

Observation 5.2.2. The long run mean (LRM) activity rate can be computed and is

independent of the current level of intensities:

lim
u→∞

E[λu|Ft] =
(
In − β−1E[η]

)−1
θ . (5.5)

There are also probabilistic quantities that are not only interesting in their own right,

but also will be of use in particle filtering methods to be discussed in Section 5.5.2.

Observation 5.2.3. The function g(t, l | y) := P[Tk(1) ∈ dt, Tk(2) = l |λtk−1
= y] admits

the representation

g(t, l | y) = exp
{
−
(
θt+ β−1(In − e−βt)(y − θ)

)
· 1n
}
·
[
e−βt(y − θ) · el + θl

]
dt (5.6)

for t ≥ 0 and l ∈ {1, . . . , n}, where ei is the n-dimensional unit vector with 1 in the ith

component. The survival analogue gsurv.(t | y) := P[Tk(1) > t |λtk−1
= y] is given by

gsurv.(t | y) = exp
{
−
(
θt+ β−1(In − e−βt)(y − θ)

)
· 1n
}
. (5.7)

The function g(t, l | y) in Equation (5.6) represents the probability density of observing
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the event Tk = (t, l), given the value of λt at the (k− 1)th event. The function gsurv.(t | y)

in Equation (5.7) is the survivor analogue of this quantity representing the probability

that the kth interarrival time is greater than t.

Observation 5.2.4. The function l(q | y, S1, S2) := P[ηtk = ηS1(1)(q) |λtk−1
= y, Tk =

S1, Tk+1 = S2], for q ∈ {0, 1, . . . , p− 1} and y ∈ Rn, admits the representation

l(q | y, S1, S2) =
ρq · g (S2 | zq(y))

p−1∑
r=0

ρr · g (S2 | zr(y))

(5.8)

with zr(y) = θ + e−βs1(1)(y − θ) + ηS1(1)(r)eS1(2). The survival analogue l(q | y, S1, S2) :=

P[ηtk = ηS1(1)(q) |λtk−1
= y, Tk = S1, Tk+1(1) > S2(1)] is obtained by simply replacing

g(·) with gsurv.(·) in Equation (5.8).

The function l(q | y, S1, S2) in Equation (5.8) represents the posterior probability that the

jump induced by the kth event is of type q, given the intensity at tk−1, and the interarrival

times Tk and Tk+1.

5.2.4 Renewal Points

Definition 5.2.5. A data point tk is said to be an ε-renewal point if
n∑
i=1

λi,tk−−θi
θi

< ε,

where ε > 0 is a free parameter.

Observe that if tk is an ε-renewal point, then λt, for t ≥ tk, is approximately (for all

numerical intents and purposes) independent of Ftk−1
(and hence, F tk−1

as well by con-

tainment). This approximation is used in Section 5.3 to efficiently compute likelihoods.

We will also drop the dependence on ε when referring to renewal points as we will fix

ε > 0 at the beginning of the calibration.

Definition 5.2.6. A cluster of events, denoted Cm
k , is the set of consecutive points

{tk, tk+1, . . . , tk+m} with the property that tk is a renewal point. Although (with prob-

ability one) there is no point at t = 0, we define t0 = 0 (so that the set Cm
0 makes

sense).
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Figure 5.2: A graphical model representation of dependencies in our self-exciting process
with random jump sizes ηtk .

5.3 Calibration Algorithm I: Isolated Likelihood

Finding traditional maximum likelihood estimators (MLEs) is not numerically feasible

due to the large number of possible sequences {ηtk}k∈N. For a graphical model representa-

tion of dependencies, see Figure 5.2. The exact likelihood function has computation time

O(pN). For numerical computations, the run time can be reduced to 1
m(N)

pm(N) (up to

a multiplicative constant), where m(N) is the size of the largest cluster of points, where

ε is taken to reflect floating point precision, with only the first point being a renewal

point. Although this is still too slow for applications in high freqeuency finance, where

N can easily be 104 and m(104) can still be far too large for practical implementations,

this discussion serves as a motivation for the algorithm developed in Section 5.3.2.

The goal of this calibration algorithm is as follows: We want to find the maximizer x̂

of a function f(x). Unfortunately, f has exponential computational time (in the total

number of data points, N). We wish to find a function g(x) that has P -time computation

and the same maximizer as f . Such a problem, in general, is extremly difficult to solve.

However, we exploit the structure of the function f to construct g quickly and efficiently

without the need to compute f even once. In particular, we exploit the probabilistic

structure of the model that generates the likelihood function f .

In what follows, we propose an efficient method for calibration to medium to large

datasets via maximizing a pseudo-likelihood function and provide an analytic bound

on how close this function is to the true likelihood function.
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5.3.1 The Isolated Likelihood Function L̃

By construction of the sequence in Step 4 of Section 5.3.2, the observations in the sequence

(each element being a consecutive sequence ofm points) are almost mutually independent.

The smaller ε is, the better this approximation will be, but the number of renewal points

will decrease.

Assuming the observations in the sequence are mutually independent and hence, λt is

restarted at level θ, the isolated log-likelihood (LLH) for each individual element (referred

to as a cluster) is explicitly:

log L̃ = log

{∑
H

L̃(H)

}
= log

{∑
H

m∏
k=1

ρHk · λTak (2),tak−(H) · P[τ > Tak(1) |H]

}
(5.9)

where {ak}k=0,1,...,m is the sequence of points within a given cluster, the random variable

τ is the time until the next event, H ∈ Zm has jth component corresponding to which

jump size trade j had (i.e. Hj ∈ {0, 1, . . . , p − 1}), λi,t is a function of the sequence H

via the random matrices η(H) and simplifies Equation (5.4) to

λi,t(H) =

θ +

t∫
ta0

e−β(t−u)η(H)
u dNu

 · ei , (5.10)

and P[τ > Tak(1) |H] is also approximated by

P[τ > Tak(1) |H] = exp
{
−
(
θTak(1) + β−1(In − e−βTak (1))(λtak−1

(H)− θ)
)
· 1n
}
.

(5.11)

Recall that Tk(1) refers to the kth inter-arrival time and Tk(2) refers to which process

this event belongs to. The probabilities in (5.9) are easily computable analytically and

the number of terms in the sum is pm.

The probabilistic argument for spliting the data into such clusters is similar to a renewal

one: When both intensity processes get close to θ (i.e. the sum of their relative errors

is less than ε), the next point is assumed to have come from a “restarted” process where

the intensity is equal to θ. For small ε, since decay is exponential, this approximation

proves to be both useful and accurate.

Notice that this method always results in the under -estimation of λ. Altering the algo-

rithm to assign any other value to λ such that θi ≤ λi ≤ θi(1 + ε) appears to offer no

discernable improvement in results for any reasonably small choice of ε.
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5.3.2 The Calibration Algorithm

The calibration of the Generalized Hawkes process to data can be perfomed efficiently via

the following fixed-point seeking algorithm. To ensure we have a unique MLE, we impose

the condition that ηij(k), for fixed i, j, is a strictly monotonic function in k. To increase

numerical stability in some datasets, as well as maintain identifiability51, one may want

additional constraints of the form |ηij(k)− ηij(k − 1)| > δij > 0 and ρi > δi > 0.

The calibration methodology can be described as seeking the fixed point of

Q
(
ξ̂
∣∣T1, · · · , TN

)
= ξ̂ with Q

(
ξ
∣∣Y ) = argsup

ζ
L̄(ζ; ξ, Y ), (5.12)

where L̄ is a pseudo-likelihood function that is the product of isolated likelihood functions

of the form of (5.9). The following algorithm provides an efficient way to do this.

1. Fit the data {Tj}j via maximum likelihood restricting the maximizer to be on

the ρ = {1, 0, 0, . . . , 0} slice of the parameter space. This can be done easily

as the likelihood can be efficiently computed since the intensity path is uniquely

determined given the data {Tj}j. Appendix E.1 outlines this procedure for the

model described in Section 3.2.2 and is easily generalized.

2. Select free parameters ε = 1
100

, and initial guess for ρ which we take to be ρ0 = 1
p
1p.

With some abuse of notation, compute initial estimate of the codomain of η, namely

η0 which is composed of η0(0),η0(1), . . . ,η0(p−1), by taking η0(j) = 2j
p(p−1)

ν where

ν is the ρ = 1 estimate of η from step 1. Take β0 and θ0 as in step 1. Finally, set

k = 0.

3. Compute the upper bound of the intensity path, i.e. the path when ηij,tq =

max
l
{ηij(l)} for all q using the current parameter estimates. Observe that this

intensity function dominates all potential intensity functions based on some jumps

being potentially less than the maximum used in the computation (for the fixed

parameter set used).

4. Select the likelihood cluster size m ∈ N and Construct a set of clusters of size m,

{Cj
k}j∈I, where I ⊂ {0, 1, 2, . . . , n} is defined by the following recursive criterion:

0 ∈ I, 1, 2, 3, . . . , (m − 1) /∈ I, and j ∈ I (for j > m − 1) whenever tj is a renewal

point and (j −m+ 1), . . . , (j − 1) /∈ I.

5. Due to the condition in step 4, likelihood maximization can now be performed in

a rather efficient way. We want to maximize the isolated likelihood function over

51A family of models is identifiable if for any arbitrary h, EΘ1 [h(·)] = EΘ2 [h(·)] implies Θ1 = Θ2. (i.e.
no two distinct models produce the same finite dimensional distributions).
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a specific
(
n2 − 1 + (n2 + 1)p

)
-dimensional subset of the parameter space. If ρ,

β, and (the possible values of) η are free parameters in the isolated likelihood

function (given by Equation (5.9) in Section 5.3.1), then, by using Observation

5.2.2, we constrain the long run mean to remain unchanged by setting

θ =
(
In − β−1E[η |Θ]

) (
In − β−1

k E[η |Θk]
)−1

θk

where we use Θ to denote an element of the parameter space.

After optimization, set k = k + 1, set ρk, βk, and ηk to the maximizers of the

isolated likelihood function, and

θk =
(
In − β−1

k E[η |Θk]
) (

In − β−1
k−1E[η |Θk−1]

)−1
θk−1.

6. If ‖ρk−ρk−j‖2 is less than some tolerance (denoted ρ-tolerance) for j = 1, 2, 3, and

if ‖βk−βk−j‖ is less than some other tolerance (denoted β-tolerance) for j = 1, 2, 3,

then break the sequence. We take these tolerances to be 0.001 and 0.1, respectively.

If k reaches an upper bound (we use 9), then break the sequence.

Otherwise, go to step 3.

The constraints in Step 5 are to improve the stability and speed of the algorithm as the

long run mean is fixed in Step 1. As it turns out, and will be confirmed numerically,

the ρ = 1 initial calibration does very well in identifying the correct long run mean of

the model, and we leave the rest of the algorithm to identify where on this subset of the

parameter space the true model resides.

The checks for convergence to a fixed point in Step 6 can be modified to the reader’s

content, as well as the choice of which matrix norm to use. In the simulation study in

Section 5.3.5, we actually consider each component of β seperately for convenience. We

will report the distribution of the break time for simulated data in Section 5.3.5, which

confirms that 9 iterations is sufficient. One thing to keep in mind is that the function

in (5.12) is not continuous in ξ, so a fixed point within the specified tolerances may not

always exist. However, as will be numerically demonstrated later on in this chapter, such

cases result in oscillation between a few values that are quite close together. This case

corresponds to when the true MLE is close to a point that causes as event to switch

between being a renewal point and not being one.
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5.3.3 Bounding the Error of the Isolated Likelihood Function

The renewal point argument given in Section 5.3.1 deserves some technical justification.

We wish to investigate the difference between the approximation of the likelihood of such

a cluster, L̃, and its true likelihood, L.

Theorem 5.3.1. Asymptotic Bound. The absolute error of the mis-specified (isolated)

likelihood function is

|L̃ − L| = O(ε) (5.13)

for small ε > 0.

Proof. See Appendix C.9.

Theorem 5.3.2. Absolute Error Bound. If β is a diagonal matrix, then we also have

explicit absolute bounds

−m log(1 + ε) < log L̃ − logL < mε‖θ‖
n∑
j=1

β−1
jj . (5.14)

Proof. See Appendix C.10.

For general distribution of η, the bounds in Equation (5.14) are sharp. However, it is

worthy to note that for a pre-specified distribution of η, these bounds can be improved

upon.

5.3.4 Link to Composite Likelihood Methods

Motivated by composite likelihood functions52 associated with Gaussian random fields,

which uses the big blocks method (see Caragea and Smith (2007)), the data is split into

approximately independent blocks.

The Composite Marginal Likelihood (see Chandler and Bate (2007)) formed by the prod-

uct of densities for all the observations in each block and is given by

LMC(Θ; y) =
B∏
b=1

f(zb; Θ) (5.15)

52For a general survey of composite likelihood functions, see Varin et al. (2011).
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where z1, . . . , zB are B blocks of data and f(z; Θ) is the marginal density of the block z.

In our framework, we choose the blocks of the form {tl, . . . , tl+s} via the following criteria:

(i) tl and tl+s are renewal points and (ii) tl+1, . . . , tl+s−1 are not renewal points.

In the calibration algorithm described in Section 5.3.2, we have approximated f(zb; Θ) by

f(z′b; Θ), where z′b contains only the firstm interarrival times of zb (or all of zb ifm ≥ s−1).

In the setup of this calibration algorithm, this density can be computed exactly with

reasonable computational time and provides a stable large sample calibration.

5.3.5 Numerical Results on Simulated Data

We find that this calibration algorithm works remarkably well (and efficiently) when

p = 2 and η(0) = 0. It is worthy to note that the generalized Hawkes model proposed

here is already more general than the model posed in Section 3.2.2 since it does not

assume symmetry of the parameters between the two components of Nt, not to mention

that the algorithm is for general dimension n. This section only reports results for n = 2

as that was our motivating example. We restrict β to be diagonal in the calibration

to maintain the bounds in Equation (5.13), and further take β to be a multiple of the

identity matrix for simulation speed (note that this restriction is not imposed on β in

the calibration).

We first present calibration results for the symmetric model posed in Section 3.2.2 of the

single asset market making problem. See Table 5.2 for means and standard deviations

of our estimators using the calibration algorithm outlined in Section 5.3.2. Estimates for

the mean jump size and long run mean are also reported. Notice that as we increase

the sample size N from 500 to 2,000 to 10,000, we get a rapid reduction in the variance

of each estimator. The histograms in Figure 5.3 show the empirical distribution of the

parameter estimates for simulated data for m = 3 on 2,000 data points.

Also notice that as we increase m from 1 to 4, we attain both a reduction in bias and in

the variance of each estimator in larger datasets (N > 2, 000) – although this is at the

expense of runtime. An additional benefit of using a larger cluster size m comes by way

of a more stable fixed-point search, as will be discussed later in this section.

See Table 5.3 for means and standard deviations of our estimators when we do not

assume symmetry (which yields 9 free parameters). Observe that the standard errors of

the estimators has increased slightly over the symmetric case as a result of the increase

in the number of parameters being estimated. The histograms in Figure 5.4 show the

empirical distribution of estimators on simulated data for m = 3 on 2,000 data points.
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N = 500

true m = 1 m = 2 m = 3 m = 4

mean (std) mean (std) mean (std) mean (std)

ρ̂ 0.7 0.753 (0.190) 0.736 (0.177) 0.729 (0.177) 0.729 (0.168)

β̂ 50 52.13 (10.99) 50.86 ( 9.05) 50.30 ( 8.15) 50.63 ( 7.53)
η̂11(1) 25 25.59 ( 9.07) 25.36 ( 7.93) 25.46 ( 7.37) 25.15 ( 6.63)
η̂12(1) 15 15.26 ( 5.91) 15.18 ( 5.18) 15.05 ( 4.61) 15.23 ( 4.22)

θ̂ 1 1.008 (0.153) 1.003 (0.146) 1.016 (0.137) 1.012 (0.141)

E[η11|Θ̂] 17.5 18.06 ( 4.27) 17.67 ( 3.64) 17.60 ( 3.26) 17.53 ( 3.18)
LRM 2.273 2.291 (0.278) 2.287 (0.295) 2.319 (0.289) 2.305 (0.283)

runtime 1.55 ( 0.79) 1.44 ( 0.79) 1.52 ( 0.87) 1.86 ( 1.15)

N = 2,000

ρ̂ 0.7 0.720 (0.113) 0.714 (0.104) 0.709 (0.093) 0.716 (0.097)

β̂ 50 50.28 ( 5.65) 50.28 ( 4.52) 50.28 ( 4.05) 50.27 ( 3.69)
η̂11(1) 25 24.97 ( 4.83) 25.14 ( 4.02) 25.04 ( 3.61) 24.91 ( 3.54)
η̂12(1) 15 14.97 ( 3.07) 14.97 ( 2.49) 15.09 ( 2.36) 14.96 ( 2.26)

θ̂ 1 0.999 (0.078) 1.001 (0.073) 1.006 (0.069) 1.002 (0.068)

E[η11|Θ̂] 17.5 17.58 ( 2.16) 17.64 ( 1.80) 17.50 ( 1.65) 17.56 ( 1.54)
LRM 2.273 2.276 (0.138) 2.281 (0.139) 2.281 (0.136) 2.276 (0.137)

runtime 2.51 ( 0.91) 2.50 ( 1.03) 3.57 ( 1.47) 5.41 ( 2.17)

N = 10,000

ρ̂ 0.7 0.705 (0.049) 0.704 (0.044) 0.703 (0.044) 0.703 (0.043)

β̂ 50 50.21 ( 2.37) 50.10 ( 2.00) 50.12 ( 1.82) 50.00 ( 1.63)
η̂11(1) 25 25.03 ( 2.15) 25.01 ( 1.71) 25.02 ( 1.63) 24.98 ( 1.62)
η̂12(1) 15 15.03 ( 1.34) 14.93 ( 1.09) 15.02 ( 0.98) 14.96 ( 0.98)

θ̂ 1 1.000 (0.034) 1.001 (0.032) 1.002 (0.030) 1.000 (0.031)

E[η11|Θ̂] 17.5 17.55 ( 0.92) 17.55 ( 0.77) 17.52 ( 0.71) 17.49 ( 0.66)
LRM 2.273 2.272 (0.063) 2.272 (0.063) 2.276 (0.063) 2.272 (0.064)

runtime 5.18 ( 1.64) 5.76 ( 1.77) 10.03 ( 3.68) 18.98 ( 7.86)

Table 5.2: Mean and standard deviations of estimators (1,000 simulations) when n =
p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm
I. Total number of free parameters is 5. LRM refers to the long run mean of activity
rate of any component of Nt and runtime is in seconds.
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Figure 5.3: Distribution of estimators (1,000 simulations of 2,000 data points) when
n = p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using
Algorithm I with m = 3.
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N = 500

true m = 1 m = 2 m = 3 m = 4

mean (std) mean (std) mean (std) mean (std)

ρ̂ 0.7 0.768 (0.184) 0.748 (0.179) 0.748 (0.179) 0.739 (0.172)

β̂1 50 52.78 (20.95) 51.88 (14.30) 51.26 (11.98) 51.40 (11.16)

β̂2 50 53.27 (17.96) 51.21 (13.75) 51.76 (12.33) 50.93 (10.62)
η̂11(1) 25 25.10 (12.02) 25.63 (10.20) 25.05 ( 9.01) 25.30 ( 8.37)
η̂12(1) 15 14.91 ( 7.88) 15.34 ( 6.84) 15.51 ( 6.79) 15.35 ( 5.70)
η̂21(1) 15 15.09 ( 8.22) 15.26 ( 6.47) 15.35 ( 6.14) 15.37 ( 5.76)
η̂22(1) 15 25.60 (12.65) 25.05 ( 9.50) 25.07 ( 8.64) 25.26 ( 8.15)

θ̂1 1 0.998 (0.175) 0.998 (0.147) 1.008 (0.138) 0.999 (0.133)

θ̂2 1 1.001 (0.166) 0.992 (0.147) 1.007 (0.134) 0.997 (0.126)

E[η11|Θ̂] 17.5 18.08 ( 6.98) 18.09 ( 5.60) 17.75 ( 4.88) 17.85 ( 4.61)
LRM1 2.273 2.289 (0.277) 2.310 (0.287) 2.324 (0.288) 2.300 (0.289)

runtime 2.26 ( 1.13) 1.98 ( 1.13) 2.10 ( 1.28) 2.50 ( 1.64)

N = 2,000

ρ̂ 0.7 0.720 (0.115) 0.721 (0.105) 0.712 (0.098) 0.717 (0.095)

β̂1 50 50.30 ( 8.00) 50.52 ( 6.50) 50.53 ( 5.75) 50.52 ( 5.33)

β̂2 50 50.72 ( 7.80) 50.52 ( 6.48) 50.37 ( 5.72) 50.07 ( 5.18)
η̂11(1) 25 24.96 ( 5.89) 24.86 ( 4.83) 25.21 ( 4.37) 24.92 ( 3.99)
η̂12(1) 15 15.01 ( 3.87) 15.05 ( 3.16) 15.13 ( 2.94) 15.05 ( 2.79)
η̂21(1) 15 15.12 ( 3.87) 14.95 ( 3.22) 15.07 ( 2.81) 14.92 ( 2.73)
η̂22(1) 15 25.17 ( 5.82) 24.83 ( 4.91) 25.01 ( 4.31) 24.77 ( 4.08)

θ̂1 1 0.999 (0.083) 0.996 (0.071) 0.998 (0.066) 1.000 (0.066)

θ̂2 1 1.003 (0.081) 1.002 (0.071) 1.001 (0.066) 1.001 (0.066)

E[η11|Θ̂] 17.5 17.55 ( 3.09) 17.60 ( 2.56) 17.68 ( 2.32) 17.63 ( 2.19)
LRM1 2.273 2.281 (0.140) 2.273 (0.135) 2.277 (0.134) 2.281 (0.135)

runtime 3.25 ( 1.29) 3.34 ( 1.48) 4.73 ( 2.09) 7.66 ( 3.34)

N = 10,000

ρ̂ 0.7 0.706 (0.051) 0.704 (0.045) 0.703 (0.044) 0.703 (0.040)

β̂1 50 50.11 ( 3.28) 50.26 ( 2.75) 49.98 ( 2.59) 50.15 ( 2.29)

β̂2 50 49.84 ( 3.34) 50.02 ( 2.67) 50.06 ( 2.51) 50.10 ( 2.30)
η̂11(1) 25 24.86 ( 2.53) 25.06 ( 2.08) 24.94 ( 1.88) 25.02 ( 1.82)
η̂12(1) 15 15.02 ( 1.61) 15.05 ( 1.43) 15.00 ( 1.28) 14.99 ( 1.21)
η̂21(1) 15 14.86 ( 1.64) 15.00 ( 1.43) 15.00 ( 1.29) 14.99 ( 1.22)
η̂22(1) 15 24.86 ( 2.60) 24.90 ( 2.07) 25.00 ( 2.02) 24.99 ( 1.76)

θ̂1 1 1.001 (0.037) 1.000 (0.031) 0.999 (0.031) 1.000 (0.029)

θ̂2 1 1.000 (0.037) 1.001 (0.033) 1.000 (0.030) 1.000 (0.029)

E[η11|Θ̂] 17.5 17.46 ( 1.33) 17.58 ( 1.08) 17.47 ( 0.99) 17.54 ( 0.94)
LRM1 2.273 2.274 (0.062) 2.273 (0.059) 2.272 (0.060) 2.271 (0.062)

runtime 7.21 ( 2.62) 7.67 ( 2.82) 13.60 ( 5.59) 25.12 (11.20)

Table 5.3: Mean and standard deviations of estimators (1,000 simulations) when n =
p = 2 and η(0) = 0 and using Algorithm I. Total number of free parameters is 9.
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Figure 5.4: Distribution of estimators (1,000 simulations of 2,000 data points) when
n = p = 2, η(0) = 0, and using Algorithm I with m = 3. This is the non-symmetric
case.
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It is worthy to point out two things when considering the stated runtimes (which are

stated in seconds). First, the machine that was used to perform these simulations is

considerably old and is considered, by today’s standards, obsolete.53 With this in mind,

it is still useful for comparable relative performance between separate simulations. Sec-

ondly, the code is written in great generality, and can be optimized for specific cases

by hardcoding dimensions and array sizes manually when speed is a priority (i.e. when

deploying such an algorithm in practice). In terms of implementation specifics, MATLAB

is the front end used for all calibrations with specific computations such as computing

likelihood functions or simulating sample paths done in C++ code compiled by MATLAB

into .mexw64 files. If one is truely concerned with speed, making use of a numerical

optimizer in C (or C++) will offer a massive speed advantage over the MATLAB optimizer

that is currently implemented.

To judge the stability of the fixed point search, we look at the tail of the distribution of

the divergence difference of ρ and β, denoted ρdiv and βdiv, respectively. If the algorithm

breaks before the maximum number of iterations is reached, then ρdiv and βdiv are both

set to 0. Otherwise, they are set to the maximum absolute difference between the fitted

value and the value at the last 4 iterations. The 99th percentile and the maximum value

for 2,000 and 10,000 simulations are provided in Tables 5.4 and 5.5, respectively, for

the symmetric case and Tables 5.6 and 5.7 for the non-symmetric case. Notice that

increasing m from 1 to 4 offers a reduction in size of the repeated oscillations of the

diverging sequences ρk and βk constructed in Section 5.3.2. Notice also that increasing

the cluster size m causes the algorithm to exit before the iteration count upper bound on

more sample paths by observing the frequency at iteration count 29 in Figure 5.5. Both

of these features suggest an increase in stability in the fixed point search.

Lastly, consulting Figure 5.5 justifies our choice of an upper bound of 9 iterations, as

enforced in Step 6 of the calibration algorithm.

53Exact specifications include an Intel Pentium E5200 dual-core CPU (2 MB cache, 2.50 GHz) and 8
GB DDR3-1,066 MHz RAM.



Chapter 5. The Generalized Latent Hawkes Process 108

m = 1 m = 2 m = 3 m = 4

99th perc. of ρdiv 0.0342 0.0199 0.0163 0.0129
maximum of ρdiv 0.0732 0.0399 0.0332 0.0264

99th perc. of β1,div 1.6740 1.2490 0.8702 0.7803
maximum of β1,div 3.5301 2.2900 2.1060 1.1990
99th perc. of β2,div 1.6740 1.2490 0.8702 0.7803
maximum of β2,div 3.5301 2.2900 2.1060 1.1990

Table 5.4: Quantities associated with judging fixed point stability. 1,000 simulations of
2,000 points when n = p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2,
and using Algorithm I.

m = 1 m = 2 m = 3 m = 4

99th perc. of ρdiv 0.0049 0.0042 0.0032 0.0026
maximum of ρdiv 0.0091 0.0064 0.0057 0.0045

99th perc. of β1,div 0.3137 0.1939 0.1989 0.1574
maximum of β1,div 0.8332 0.3935 0.3799 0.2781
99th perc. of β2,div 0.3137 0.1939 0.1989 0.1574
maximum of β2,div 0.8332 0.3935 0.3799 0.2781

Table 5.5: Quantities associated with judging fixed point stability. 1,000 simulations of
10,000 points when n = p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2,
θ1 = θ2, and using Algorithm I.

m = 1 m = 2 m = 3 m = 4

99th perc. of ρdiv 0.0342 0.0244 0.0160 0.0139
maximum of ρdiv 0.0575 0.0439 0.0375 0.0282

99th perc. of β1,div 1.9714 1.7593 1.3430 1.4206
maximum of β1,div 4.6900 2.9871 2.3766 3.4232
99th perc. of β2,div 1.8483 1.4009 1.2609 1.1082
maximum of β2,div 6.9472 3.4182 2.0013 2.7650

Table 5.6: Quantities associated with judging fixed point stability. 1,000 simulations of
2,000 points when n = p = 2, η(0) = 0, and using Algorithm I. This is the non-symmetric
case.
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m = 1 m = 2 m = 3 m = 4

99th perc. of ρdiv 0.0055 0.0041 0.0036 0.0032
maximum of ρdiv 0.0099 0.0057 0.0064 0.0058

99th perc. of β1,div 0.3590 0.2643 0.2293 0.2200
maximum of β1,div 0.6788 0.4690 0.6056 0.4534
99th perc. of β2,div 0.3935 0.2902 0.2974 0.2382
maximum of β2,div 0.6788 0.5223 0.7381 0.3585

Table 5.7: Quantities associated with judging fixed point stability. 1,000 simulations of
10,000 points when n = p = 2, η(0) = 0, and using Algorithm I. This is the non-
symmetric case.
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Figure 5.5: Distribution for the number of iterations of the calibration algorithm on 1,000
simulations of 2,000 points in the symmetric model.
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5.4 Calibration Algorithm II: Sequential Monte Carlo

Calibration Algorithm I excels when p = 2 and η(0) = 0 with superior speed, but is

not robust and fails to provide meaningful estimators when either η(0) ≥ 0 (interpreted

element-wise) or p > 2. To this end, we introduce a slower, yet more robust method of

calibration that utilizes Sequential Monte Carlo particle filtering (see, e.g., Gordon et al.

(1993), Pitt and Shephard (1999), and Doucet et al. (2000)) . These techniques will also

provide a more reliable method to estimate λt online in Section 5.5.2.

5.4.1 Sequential Monte Carlo & Particle Filtering – Classical

Method

Here we briefly describe the SMC particle filtering algorithm for estimating the distribu-

tion of the hidden states λt1 , . . . ,λtN−1
, beginning with M particles at λ0 = θ.

At step k ∈ {2, 3, . . . , N}, we have λtk−2
and wish to propagate particles i = 1, . . . ,M

forward to get λtk−1
.

1. Draw M samples of λtk−1
from the posterior distribution

λ
(i)
tk−1
∼ P

[
λtk−1

|λtk−2
, Tk−1 , Tk

]
.

(a) compute lk−1(q) := l(q |λtk−2
, Tk−1, Tk) (i.e. probability that Hk−1 = q, for

q = 1, . . . , p− 1, given λtn−2 , Tn−1, and Tn) where l(q | y, S1, S2) is provided in

Observation 5.2.4.

(b) Draw iid uniforms u(i) ∼ U(0, 1) for each i = 1, . . . ,M

(c) Use the uniform u(i) to simulate and set H
(i)
k−1 = q ∈ {0, 1, . . . , p − 1} with

corresponding probability lk−1(q). That is, set

H
(i)
k−1 = sup

{
q ∈ {0, 1, . . . , p− 1} :

q−1∑
z=0

lk−1(z) ≤ u(i)

}

(d) Set

λ
(i)
tk−1

= θ + e−βTk−1(1)(λ
(i)
tk−2
− θ) + η(H

(i)
k−1) eTk−1(2)
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2. Compute the un-normalized weights, given the observation Tk

α
(i)
k =

P
[
Tk |λtk−1

= λ
(i)
tk−1

]
P
[
Hk−1 = H

(i)
k−1 |λtk−2

= λ
(i)
tk−2

, Tk−1

]
P
[
Hk−1 = H

(i)
k−1 |λtk−2

= λ
(i)
tk−2

, Tk−1 , Tk

] (5.16)

= g(Tk , H
(i)
k−1 |λ

(i)
tk−1

)×
ρ
H

(i)
k−1

lk−1(H
(i)
k−1)

(5.17)

where g(t, l | y) is provided by Equation (5.6) in Observation 5.2.3.

3. Compute and resample from the normalized weights.

(a) W
(i)
k = α

(i)
k /
∑

j α
(j)
k

(b) Draw a single uniform u ∼ U(0, 1) and define ui = u+i−1
M

, i = 1, . . . ,M

(c) Find Ni such that
∑Ni−1

j=1 W
(j)
k ≤ ui ≤

∑Ni
j=1W

(j)
k . The number of “offspring”

for particle i is given by Mi = Ni −Ni−1 (with N0 = 0)

(d) For each λ
(i)
tk−1

, create Mi offspring and call these λ
(i)

tk−1

(e) The updated equally weighted paths of the particles are λ
(i)

t1
, . . . ,λ

(i)

tk−1

5.4.2 The Calibration Algorithm

Similar to the composite likelihood framework of Section 5.3.4, we split up the density

into the product of conditional densities54 (instead of marginal densities as was done

previously) via

L(Θ; y) = f(z1; Θ)
∏
k≥2

f(zk; z1, . . . , zk−1,Θ) , (5.18)

where f(zk; ·,Θ) is the conditional density of the kth block of data.

As done in Algorithm I, the simpler ρ = 1 model is calibrated first. While constraining

the long run mean to remain unchanged, we proceed to approximate each factor in

f(z1; Θ)
N∏
k=2

f(zk; z1, . . . , zk−1,Θ) by particle propagation to estimate the distribution of

λtk−1
. More specifically,

1. Propagate the particles to tk−2 as outlined in Section 5.4.1.

2. Decay λt by rate matrix β to tk−1.

54For composite conditional likelihood methods, see Stein et al. (2004).
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3. Add a randomly generated jump η from the prior jump distribution (i.e. the

distribution with probabilities given by ρ).

The explicit details for estimating λt for all t (i.e. not just at event times tk) are given

in Section 5.5.2.

5.4.3 Numerical Results on Simulated Data: η(0) = 0

See Table 5.8 and 5.9 for the means and standard deviations of the estimators using

Algorithm II performed on the two models that were calibrated in Section 5.3.5. Observe

that there is a noticable increase in accuracy at the cost of runtime, especially for N = 500

data points. Notice that the reduction in the estimators’ standard errors over Algorithm

I (across all cluster sizes m = 1, 2, 3, 4) exists even for as few as 10 particles. Figures

5.6 and 5.7 depict the distributions of the aforementioned estimators for N = 2,000 data

points and using 20 particles.
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N = 500

true 10 particles 20 particles 50 particles

mean (std) mean (std) mean (std)

ρ̂ 0.7 0.690 (0.153) 0.690 (0.155) 0.684 (0.157)

β̂ 50 51.93 ( 5.49) 51.76 ( 5.45) 51.38 ( 5.46)
η̂11(1) 25 27.25 ( 6.15) 27.06 ( 6.05) 27.36 ( 6.40)
η̂12(1) 15 16.32 ( 3.99) 16.25 ( 3.85) 16.28 ( 4.03)

θ̂ 1 1.016 (0.131) 1.015 (0.124) 1.019 (0.128)

E[η11|Θ̂] 17.5 18.07 ( 2.51) 17.91 ( 2.46) 17.90 ( 2.41)
LRM 2.273 2.310 (0.287) 2.299 (0.282) 2.312 (0.287)

runtime 4.42 ( 2.72) 8.68 ( 6.88) 21.45 (14.98)

N = 2,000

ρ̂ 0.7 0.717 (0.087) 0.706 (0.089) 0.710 (0.090)

β̂ 50 50.84 ( 2.73) 50.66 ( 2.79) 50.64 ( 2.72)
η̂11(1) 25 24.96 ( 2.86) 25.39 ( 3.08) 25.24 ( 3.12)
η̂12(1) 15 15.04 ( 1.82) 15.19 ( 1.85) 15.18 ( 1.91)

θ̂ 1 1.004 (0.066) 1.006 (0.064) 1.004 (0.061)

E[η11|Θ̂] 17.5 17.70 ( 1.22) 17.69 ( 1.24) 17.69 ( 1.24)
LRM 2.273 2.277 (0.139) 2.279 (0.139) 2.283 (0.140)

runtime 17.64 (31.90) 31.20 (23.78) 89.48 (115.73)

Table 5.8: Mean and standard deviations of estimators (1,000 simulations) when n =
p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm
II. Total number of free parameters is 5.
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N = 500

true 10 particles 20 particles 50 particles

mean (std) mean (std) mean (std)

ρ̂ 0.7 0.667 (0.154) 0.676 (0.159) 0.689 (0.168)

β̂1 50 52.20 ( 7.71) 52.07 ( 7.40) 52.22 ( 7.79)

β̂2 50 52.13 ( 7.73) 52.01 ( 7.99) 51.97 ( 7.54)
η̂11(1) 25 28.17 ( 7.46) 27.94 ( 7.53) 27.41 ( 7.72)
η̂12(1) 15 17.11 ( 5.12) 16.90 ( 5.22) 16.80 ( 5.14)
η̂21(1) 15 17.30 ( 5.16) 16.96 ( 4.98) 16.99 ( 5.16)
η̂22(1) 15 28.04 ( 7.36) 27.75 ( 7.44) 27.39 ( 7.60)

θ̂1 1 1.011 (0.103) 1.011 (0.107) 1.009 (0.110)

θ̂2 1 1.011 (0.106) 1.012 (0.111) 1.011 (0.104)

E[η11|Θ̂] 17.5 17.99 ( 3.53) 18.05 ( 3.38) 17.97 ( 3.48)
LRM1 2.273 2.293 (0.277) 2.303 (0.283) 2.303 (0.288)

runtime 4.48 ( 3.10) 8.26 ( 5.30) 21.39 (13.68)

N = 2,000

ρ̂ 0.7 0.714 (0.090) 0.707 (0.088) 0.705 (0.089)

β̂1 50 50.95 ( 3.96) 50.33 ( 3.72) 50.56 ( 4.00)

β̂2 50 51.06 ( 3.92) 50.67 ( 3.85) 50.58 ( 3.90)
η̂11(1) 25 25.21 ( 3.67) 25.16 ( 3.49) 25.34 ( 3.43)
η̂12(1) 15 15.17 ( 2.31) 15.12 ( 2.18) 15.18 ( 2.19)
η̂21(1) 15 15.28 ( 2.37) 15.21 ( 2.28) 15.14 ( 2.19)
η̂22(1) 15 25.30 ( 3.62) 25.41 ( 3.53) 25.40 ( 3.43)

θ̂1 1 1.004 (0.054) 0.999 (0.054) 1.002 (0.053)

θ̂2 1 1.003 (0.053) 1.002 (0.052) 1.002 (0.055)

E[η11|Θ̂] 17.5 17.75 ( 1.78) 17.57 ( 1.67) 17.65 ( 1.73)
LRM1 2.273 2.281 (0.141) 2.275 (0.140) 2.276 (0.140)

runtime 15.79 (14.56) 30.19 (23.03) 75.56 (56.66)

Table 5.9: Mean and standard deviations of estimators (1,000 simulations) when n =
p = 2, η(0) = 0, and using Algorithm II. Total number of free parameters is 9.
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Figure 5.6: Distribution of estimators (1,000 simulations of 2,000 data points) when
n = p = 2, η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using
Algorithm II with 20 particles.
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Figure 5.7: Distribution of estimators (1,000 simulations of 2,000 data points) when
n = p = 2, η(0) = 0, and using Algorithm II with 20 particles. This is the non-symmetric
case.
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5.4.4 Numerical Results on Simulated Data: η(0) ≥ 0

As previously mentioned, Algorithm I breaks down when the η(0) = 0 constraint is

relaxed to η(0) ≥ 0 and does not yield meaningful parameter estimates. This simula-

tion study reveals that Algorithm II is robust enough to provide reasonable parameter

estimates in this more generalized setting. Although the runtime is significantly longer

than its η(0) = 0 counterpart (due to the fact that more particles are required to better

approximate the posterior distribution of λt), it is still far faster than currently known

Monte Carle Expectation Maximization (MCEM) algorithms. In terms of running this in

a high frequency trading framework, one can run the calibration in a parallel process and

rely on real-time online updating as discussed in Section 5.5. The observed runtime can

allow re-calibration of parameters as often as every few minutes on a reasonably powered

machine and is a feasable solution in a variety of practical settings.

See Tables 5.10 and 5.11 for means and standard errors of estimators and other quantities

of interest. Figures 5.8 and 5.9 also provide the histograms of the distributions of some

of these statistics. Observe that there is much more variability in the estimators of η(0)

and η(1) (and ρ as well). However, in spite of this, the estimates of the mean jump size

E[η] still have relatively low standard deviation. The algorithm also detects the long run

mean with reasonable accuracy. It is difficult to differentiate two points in the parameter

space that have equal long run mean and mean jump size as the difference between the

likelihood function is extremely small and influenced by noise.

Given this algorithm’s ability to identify long run mean, mean jump size, and extract

reasonable and meaningful parameter estimates while keeping run-time down to a few

minutes, it is clear that it is a useful complimentary method to Algorithm I that performs

well for small samples and/or when η(0) ≥ 0.
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N = 2,000

true 50 particles 200 particles

mean (std) mean (std)

ρ̂ 0.7 0.572 (0.147) 0.592 (0.136)

β̂ 50 49.81 ( 2.70) 49.91 ( 2.76)
η̂11(0) 5 8.07 ( 3.77) 7.06 ( 3.34)
η̂11(1) 25 27.64 ( 5.10) 27.41 ( 4.67)
η̂12(0) 5 7.03 ( 2.54) 6.65 ( 2.43)
η̂12(1) 15 16.20 ( 2.96) 16.19 ( 2.84)

θ̂ 1 1.007 (0.057) 0.997 (0.061)

E[η11|Θ̂] 19 18.82 ( 1.43) 18.88 ( 1.30)

E[η12|Θ̂] 12 11.99 ( 0.91) 12.03 ( 1.04)
LRM 2.632 2.643 (0.175) 2.630 (0.191)

runtime 72.49 (48.96) 382.85 (317.60)

Table 5.10: Mean and standard deviations of estimators (250 simulations) when n =
p = 2, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm II. Total
number of free parameters is 7.
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N = 2,000

true 50 particles 200 particles

mean (std) mean (std)

ρ̂ 0.7 0.589 (0.101) 0.595 (0.102)

β̂1 50 49.86 ( 3.21) 49.95 ( 3.62)

β̂2 50 50.24 ( 3.47) 49.83 ( 3.59)
η̂11(0) 5 7.79 ( 3.20) 7.34 ( 3.54)
η̂11(1) 25 27.22 ( 4.26) 27.18 ( 4.44)
η̂12(0) 5 7.11 ( 2.67) 6.16 ( 2.71)
η̂12(1) 15 15.81 ( 3.22) 16.60 ( 3.58)
η̂21(0) 5 6.78 ( 2.91) 5.93 ( 2.74)
η̂21(1) 15 16.06 ( 3.45) 16.47 ( 3.05)
η̂22(0) 5 8.27 ( 3.63) 7.20 ( 3.18)
η̂22(1) 25 27.01 ( 4.34) 27.22 ( 4.23)

θ̂1 1 1.000 (0.057) 1.005 (0.056)

θ̂2 1 1.008 (0.061) 1.001 (0.056)

E[η11|Θ̂] 19 18.96 ( 1.66) 18.87 ( 1.65)

E[η12|Θ̂] 12 12.03 ( 1.41) 12.12 ( 1.36)

E[η21|Θ̂] 12 12.10 ( 1.38) 12.05 ( 1.32)

E[η22|Θ̂] 19 19.03 ( 1.75) 18.86 ( 1.70)
LRM1 2.632 2.652 (0.172) 2.654 (0.184)
LRM2 2.632 2.656 (0.175) 2.648 (0.175)

runtime 75.79 (61.95) 369.75 (329.47)

Table 5.11: Mean and standard deviations of estimators (250 simulations) when n = p =
2 and using Algorithm II. Total number of free parameters is 13.
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Figure 5.8: Distribution of estimators (250 simulations of 2,000 data points) when n =
p = 2 and using Algorithm II with 50 particles. This is the non-symmetric case.
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Figure 5.9: Distribution of estimators (250 simulations of 2,000 data points) when n =
p = 2 and using Algorithm II with 50 particles. This is the non-symmetric case.
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5.5 F t - Adapted Estimators for λt

Sections 5.3 and 5.4 are useful in generating pseudo-likelihood estimators of Θ. However,

even with knowledge of the true value of Θ, it is still no trivial task to recover the latent

process λt. This section provides two methods for real-time estimation of λt.

5.5.1 Via Renewal Points

In this section, we propose a method to estimate the current value of λt after the cali-

bration has been performed. Motivated by the subsequence selection criteria explained

in Step 4 of Section 5.3.2, we compute an estimator for λt as follows: Suppose you want

to compute λ̂t with t ∈ [tk, tk+1).

1. Find k0 ≤ k such that tk0 is a renewal point, but tk0+1, . . . , tk are not renewal points.

2. Assume λtk0− = θ. Compute the pk−k0+1 possible values of λtk (and hence, λt as

well). Denote the possible values of λt as λ(i).

3. Compute the posterior probability of each value of λ(i) in Step 2 using the approx-

imation

P
[
λt = λ(i) | F t

]
≈ P

[
λt = λ(i)

∣∣σ ({Nu}u∈[tk0 ,t]

)
, λtk0 = θ

]
. (5.19)

The details of this computation can be found in Appendix E.4.

4. Take the estimator λ̂t to be the posterior mean. More generally, one could take

λ̂t such that h(λ̂t) is (conditional on the observed data) unbiased for h(λt), where

h : Rn
+ → Rn.

Observe that the simplifying approximation in Step 2 becomes more accurate as ε ↓ 0.

However, the smaller ε is, the more inefficient this algorithm becomes since (for a fixed t)

k0 decreases as ε decreases. Hence, the number of total paths can quickly become quite

large if ε is unreasonably small.

5.5.2 Via Sequential Monte Carlo

This method was used in producing this chapter’s motivating plots in Figure 5.1. Fur-

thermore, we propose this to be the method used in constructing on-the-fly estimators
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for λt for use in the optimal HFT strategy in the setting of Chapter 3.

Section 5.4.1 outlines the classical method for particle filtering using Sequential Monte

Carlo. However, we need a way to estimate λtk that is F tk measurable. Unfortunately,

classical SMC methods do not address this issue, nor do they provide a way to estimate

λt when t is not the arrival time of an event. That is, we seek an estimator λ̂t such

that: If G is a σ-algebra on Ω with λ̂t ∈ G, then for any event time tk ≤ t, we must have

G ⊆ F tk if and only if t = tk.

To this end, we first consider the state of the particles at tk−1 via classical SMC methods

(as in Section 5.4.1). We can then use the survival probability (no event yet after the kth

event) to find the posterior probability that the kth event induced a particular jump ηk,

propagate the particles forward to get an estimate of the posterior distribution of λtk ,

and exponentially decay this value forward to find λt. The full details of this modified

SMC particle filter are given as follows:

Let t ∈ [tk, tk+1) for some k ∈ N and denote Tk+1,surv. as the observation that the inter-

arrival time of the (k + 1)th event is right truncated at t− tk.

1. Using the method in Section 5.4.1, propagate the particles to tk−1.

2. Draw M samples of λtk from the posterior distribution

λ
(i)
tk
∼ P

[
λtk |λtk−1

, Tk , Tk+1,surv.

]
.

(a) Compute lk,surv.(q) := lsurv.(q |λtk−1
, Tk, Tk+1,surv.) (i.e. probability thatHn−1 =

q, for q = 1, . . . , p− 1, given λtk−1
, Tk, and Tk+1,surv.) where lsurv.(q | y, S1, S2)

is provided in Observation 5.2.4.

(b) Draw iid uniforms u(i) ∼ U(0, 1) for each i = 1, . . . ,M

(c) Use the uniform u(i) to simulate and set H
(i)
k = q ∈ {0, 1, . . . , p − 1} with

corresponding probability lk,surv.(q). That is, set

H
(i)
k−1 = sup

{
q ∈ {0, 1, . . . , p− 1} :

q−1∑
z=0

lk,surv.(z) ≤ u(i)

}

(d) Set

λ
(i)
tk

= θ + e−βTk(1)(λ
(i)
tk−1
− θ) + η(H

(i)
k ) eTk(2)
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3. Compute the un-normalized weights, given the observation Tk+1,surv.

α(i) =
P
[
Tk+1,surv. |λtk = λ

(i)
tk

]
P
[
Hk = H

(i)
k |λtk−1

= λ
(i)
tk−1

, Tk

]
P
[
Hk = H

(i)
k |λtk−1

= λ
(i)
tk−1

, Tk , Tk+1,surv.

] (5.20)

= gsurv.(Tk+1,surv. |λ(i)
tk

)×
ρ
H

(i)
k

lk,surv.(H
(i)
k )

(5.21)

where g(t, l | y) is provided by Equation (5.7) in Observation 5.2.3.

4. Compute and resample from the normalized weights.

(a) W (i) = α(i)/
∑

j α
(j)

(b) Draw a single uniform u ∼ U(0, 1) and define ui = u+i−1
M

, i = 1, . . . ,M

(c) Find Ni such that
∑Ni−1

j=1 W (j) ≤ ui ≤
∑Ni

j=1W
(j). The number of “offspring”

for particle i is given by Mi = Ni −Ni−1 (with N0 = 0)

(d) For each λ
(i)
tk

, create Mi offspring and call these λ
(i)

tk

(e) The updated equally weighted paths of the particles are λ
(i)

t1
, . . . ,λ

(i)

tk−1

5. Decay the resulting particles at tk exponentially with decay rate matrix β to get

λ
(i)

t = θ + e−β(t−tk)
(
λ

(i)

tk
− θ

)
. (5.22)

Note that we have already resampled under the posterior probabilities given this

survival event. Hence, the particles at time t still have uniform probability.

See Figure 5.10 for a visual depiction of the mean of 3 particles propagating through

time. At any time t, the value of the particle is conditional on F t, not F tk . Observe how

in some instances the particles experience sudden drops during exponential decay. This

is due to the fact that just after the arrival of an event, there is little information about

whether or not the event induced a jump in the particle. However, as time evolves with

the absence of the arrival of the next event, the posterior probability that the previous

event induced a large jump decreases and eventually some particles now do not experience

the aforementioned jump. Hence, there is a downwards jump in the adapted propagation

of such particles. This is easy to visualize due to the small number of particles used in

the SMC particle filter (only 3 in this plot). As the number of particles becomes large,

this effect will be smoothed out and will cause the mean of all the particles to decay

faster than rate β (the decay may no longer be exponential, but the resulting intensity

is less than that if it decayed exponentially with rate β).
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Figure 5.10: Propagation of the progressively measureable particle filter using the mean
of 3 particles via SMC with simulated data.

Furthermore, the mean jump size in the particles at the next event will be at least

E[η]. If the next event occurs shortly after the previous one, then some of the particles

may exhibit an additional jump due to the fact that the previous event may now be

considered to be one that induces a large jump in λt. Such behaviour is a byproduct

of the posterior probability of the previous point causing a large jump in λt being high

when the next event occurs very shortly thereafter. Because the particle propagation

must be F t-adapted, this posterior probability does not increase until the time of the

next event.

To get the point estimator λ̂t, first notice that conditional on F t, the posterior probability

of each particle is equal. With a slight abuse of notation, denote the ith particle as

λ
(i)
t . Observe that the estimators λ̂t = 1

M

M∑
i=1

λ
(i)
t are approximately unbiased for λt

(given the calibrated parameters are correct), where M is the number of particles. The

approximation is due to the left limit of λ at renewal points being very close to θ, but not

actually equal to θ. Since the conditional distribution of λt is uniform over the particles,

computing unbiased estimators for a given function of λt is a trivial numerical task.

5.6 Other Applications

Within the context of quantitative finance, self-exciting latent processes can be used to

model the default times of corporate bonds in multiple sectors. This has been studied

in Azizpour and Giesecke (2008), where the classical Hawkes process is applied to such

data. The authors also provide filtering methods when the intensity process is masked by

a latent diffusion process. The extension to the case where the jump size for each event
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is both latent and random is a natural one as the default of a large cap corporate bond

would have a very different effect on a macroscopic level than that of a start-up firm.

The use of the multivariate Hakwes model in market microstructure has been studied in

a variety of flavours. Large (2007) explores a stylized framework where he distinguishes

between market orders (MOs) and limit orders (LOs) based on whether or not they cause

a change in the market price. Bacry and Muzy (2013) jointly model the arrival of MOs

and the up/down ticks in a 4-dimensional Hawkes process.

Continuing with this theme, one could attempt to (exogenously) model just the tick

movements in a way that also distinguishes between an uptick due to the bid price

increasing versus the ask price increasing for the purposes of price and liquidity prediction.

These two events are fundamentally different as the former results in a tighter bid/offer

spread, whereas the latter results in a wider spread. This subtle distinction is typically

lost in the modelling choice (although it is recoverable in the framework that Large (2007)

poses).

To this end, one could classify market movements as one of four types: the best bid

price moves up or down, and the best offer price moves up or down. The cause of

such movements can be one of three basic types (MO submission, LO cancellation, LO

submitted inside the spread). It is observed that certain movements in the BBO tend

to cluster together and cross-excite other movements of a particular type. For example,

an increase in the best offer price may be likely to induce the arrival of LOs to the offer

side causing the next event to be a reduction in the best offer price. Or perhaps the data

suggests that an increase in the best offer will self-excite more increases of the same type,

but will also cross-excite increases in the best bid price. This will ultimately create a

short term upward pressure on the price for this asset.

Finally, as eluded to at the beginning of this chapter, there are several cross-disciplinary

applications of the Classical Hawkes Model that the author feels are also worth exploring

in the context of the more generalized process presented in Section 5.2.1.



Chapter 6

Application to Real Data

This chapter applies some of the theoretical results developed throughout previous chap-

ters of this thesis to real tick-by-tick event data for two equities trading on the NASDAQ

exchange and one equity on the NYSE. Sections 6.1 and 6.2 apply the calibration method-

ologies of Sections 5.3 (Algorithm I) and 5.4 (Algorithm II), respectively, where parameter

estimates and some model adequacy diagnostics are reported. Section 6.3 discusses the

performance of the single asset market making strategy derived in Chapter 3 (with a

slight modification for market orders, described in Section 6.3.1). Parameter estimates

from Section 6.1.1, combined with the modified on-the-fly particle filtering method devel-

oped in Section 5.5.2, are the tools used to construct on-the-fly estimates of λt (adapted

to the smaller, observable filtration F t).

6.1 Statistical Results: Generalized Latent Hawkes

Process when η(0) = 0

In this section, we apply Algorithm I with cluster size m = 4, as described in Section

5.3.2, to the symmetric 2-dimensional Hawkes model used in Chapter 3, as well as the

non-symmetric case. For this entire section, we impose the constraint that η(0) = 0.

6.1.1 Parameter Estimates

The raw data is comprised of LOB events which classifies all events as executed market

orders (MOs), limit order (LO) submissions, and LO cancellations. A typical trading day

127
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BBBY MSFT TEVA

mean (std) mean (std) mean (std)

ρ̂ 0.776 (0.171) 0.412 (0.087) 0.766 (0.171)

β̂ 97.42 (27.13) 105.35 (27.13) 115.64 (33.01)
η̂11(1) 49.16 (16.05) 125.76 (31.53) 61.57 (18.59)
η̂12(1) 6.57 ( 2.37) 19.39 ( 6.62) 11.88 ( 4.16)

θ̂ 0.085 (0.041) 0.157 (0.075) 0.105 (0.054)

E[η11|Θ̂] 36.80 (10.87) 51.53 (15.75) 45.89 (13.46)

E[η12|Θ̂] 4.95 ( 1.72) 7.92 ( 2.89) 8.97 ( 3.44)
LRM 0.151 (0.076) 0.371 (0.240) 0.206 (0.117)

Table 6.1: Mean and standard deviations of estimators on historical data when n = p = 2,
η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I with a
cluster size of m = 4. Total number of free parameters is 5. LRM refers to the long run
mean of activity rate of any component of Nt, given by Lemma 3.2.2. Sample consists
of disjoint 60-minute windows between 10:00am and 4:00pm from Jan-May 2011.

could have anywhere from 200,000 to 1,000,000 total events per equity, of which contain

5,000 to 50,000 market orders (after amalgamation – the exchange records a separate

entry when a MO fills multiple LO quotes; partial fills are also treated as a single MO).

The LOB must be reconstucted from this raw data by keeping track of all existing LO

quotes and updating it with submissions, cancellations, and executions.

We perform a calibration to disjoint 60 minute windows between 10:00am and 4:00pm,

for the months January to May of 2011. Although each window is treated equally in the

sample, this could be refined by considering different periods throughout the trading day

(morning, afternoon, and close). The analysis is performed for the three tickers BBBY (Bed

Bath and Beyond Inc.), MSFT (Microsoft Corporation), and TEVA (Teva Pharmaceutical

Industries Ltd). See Tables 6.1 and 6.2 for results for the symmetric model (as described

in Chapter 3) and its non-symmetric version, respectively. We also provide histograms

of the fitted parameters for the symmetric model in Figure 6.1.

Observe from Table 6.2 that even if we do not impose the symmetry conditions in the

calibration, that the maximum likelihood estimators (MLEs) still produce symmetric

estimates of the parameters (in mean). A simple check to see if there is negative correla-

tion between these parameters (they can still be equal in mean, but be heavily negatively

correlated) is to check their empirical correlation. Table 6.3 shows that the empirical cor-

relations for all the quantities in question are positive. In favour of sparsity, we continue

the analysis in this section only focusing on the symmetric model.
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BBBY MSFT TEVA

mean (std) mean (std) mean (std)

ρ̂ 0.789 (0.168) 0.419 (0.088) 0.777 (0.168)

β̂1 99.43 (36.79) 107.07 (33.61) 119.01 (44.02)

β̂2 100.60 (37.12) 107.74 (32.74) 117.37 (38.16)
η̂11(1) 49.95 (20.49) 124.87 (38.22) 63.32 (23.13)
η̂12(1) 6.91 ( 3.14) 20.85 ( 8.73) 12.47 ( 5.58)
η̂21(1) 6.35 ( 3.26) 19.23 ( 8.69) 11.74 ( 5.53)
η̂22(1) 49.61 (20.95) 129.48 (39.37) 60.63 (22.37)

θ̂1 0.085 (0.042) 0.163 (0.084) 0.104 (0.056)

θ̂2 0.084 (0.044) 0.149 (0.082) 0.105 (0.057)

E[η11|Θ̂] 38.16 (14.57) 51.99 (18.03) 48.05 (17.43)

E[η12|Θ̂] 5.31 ( 2.40) 8.59 ( 3.60) 9.57 ( 4.65)

E[η21|Θ̂] 4.85 ( 2.31) 7.95 ( 3.57) 8.93 ( 4.15)

E[η22|Θ̂] 37.72 (14.43) 53.49 (17.50) 45.70 (15.77)
LRM1 0.155 (0.079) 0.389 (0.257) 0.209 (0.123)
LRM2 0.150 (0.078) 0.364 (0.244) 0.204 (0.117)

Table 6.2: Mean and standard deviations of estimators on historical data when n = p = 2,
η(0) = 0, and using Algorithm I with a cluster size of m = 4. LRM refers to the long run
mean of activity rate of Nt, given by Lemma 3.2.2. Sample consists of disjoint 60-minute
windows between 10:00am and 4:00pm from Jan-May 2011.

BBBY MSFT TEVA

corr(β̂1, β̂2) 0.074 0.208 0.267
corr(η̂11(1), η̂22(1)) 0.220 0.206 0.294
corr(η̂12(1), η̂21(1)) 0.186 0.234 0.176

corr(θ̂1, θ̂2) 0.812 0.618 0.828

Table 6.3: Sample correlation of selected pairs of estimators when the calibration does
not impose symmetry.
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Figure 6.1: Frequency of parameter estimates when constrained to n = p = 2, η(0) = 0,
η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I. Sample consists
of disjoint 60-minute windows between 10:00am and 4:00pm from Jan-May 2011.
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BBBY MSFT TEVA

N 546 1347 1286
ρ̂ 0.701 0.331 0.564

β̂ 118.34 66.94 103.37
η̂11(1) 69.17 103.56 82.60
η̂12(1) 10.60 10.24 17.39

θ̂ 0.041 0.084 0.082

Table 6.4: Parameter estimates used for PIT and P-P model diagnotics for the 2:00-3:00
window of May 31, 2011.

BBBY MSFT TEVA

N 1526 2898 1738
ρ̂ 0.482 0.373 0.605

β̂ 90.93 80.02 100.63
η̂11(1) 69.54 91.83 59.72
η̂12(1) 8.42 14.66 11.63

θ̂ 0.126 0.176 0.137

Table 6.5: Parameter estimates used for PIT and P-P model diagnotics for the 3:00-4:00
window of May 31, 2011.

6.1.2 Model Validation: Probability Integral Transform

All model diagnostics performed in this section are done with isolated likelihood cluster

size m equal to 4 for Algorithm I from Section 5.3.2. We use data from the last two

60-minute windows (2:00-3:00 and 3:00-4:00) of the last day in the period used in Section

6.1 (May 31, 2011). The parameter estimates for these 60-minute windows can be found

in Tables 6.4 and 6.5, respectively.

The Probability Integral Transform (PIT; see Thorarinsdottir (2013)) is a transformation

of each interarrival time into a random variable supported on the unit interval. Under

the true model, this is an iid sequence of uniform random variables on [0, 1]. Exact PIT

quantites can be computed using the following decomposition:

P
[
Tk(1) > Tk,obs(1) |F tk−1

]
=∑

i

P
[
Tk(1) > Tk,obs(1) |λtk−1

= λ(i)
]
P
[
λtk−1

= λ(i) |F tk−1

]
.

(6.1)
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Figure 6.2: A workflow diagram representing the PIT calculation of the ith particle for
the kth interarrival time Tk.

Further notice that the last probability is a posterior probability of a particular value of

λ given the data. The details regarding the computation of this quantity can be found

in Appendix E.4. Since we are conditioning on F tk−1
(the filtration at the time of an

event), we do not need to include a survival probability since the last event.

Note that time to compute the posterior distribution of λt at the end of a cluster of

size n is O(2n). Due to this computational complexity, we use Sequential Monte Carlo

(SMC) with 100 particles to efficiently approximate the PIT quantities. To calculate

the survival probability associated with the kth interarrival time, we first propagate the

particles to tk−2, then decay them exponentially to tk−1 and add a jump with probability

ρ. A workflow diagram of this method is given in Figure 6.2. As discussed in Section

5.5.2, the state of the particle at tk−1 must be F tk−1
measurable and, as described there,

this induces some subtlety in its simulation.

Figures 6.3 and 6.4 show the distribution of the PIT quantities (for comparison purposes,

the Poisson case is also shown). If the model is correct, then the PIT should produce

iid uniform-(0, 1) random variables. A higher order test for uncorrelated uniforms is to

look at the sample auto-correlation function. Figures 6.5 and 6.6 show the corresponding

auto-correlation functions.

Observe the drastic improvement over the poisson case (the constant mean of the poisson

case is taken to be equal to the long run mean in the full model). The autocorrelation at

several lags is also statistically significantly positive when the poisson model is assumed,

which is consistent with the notion of self-excitation of event arrivals. Although there are

some lags for the Generalized Hawkes model that are statistically significantly different

from zero, the deviation from zero autocorrelation and level of significance is far more

prominent in the case of the Poisson process. Some deviation is expected since we

acknowledge that the parsimonious model we are fitting is not 100% perfect.
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Figure 6.3: Distribution of the PIT quantities when constrained to n = p = 2, η(0) = 0,
η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I for the 2:00-3:00
window.
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Figure 6.4: Distribution of the PIT quantities when constrained to n = p = 2, η(0) = 0,
η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I for the 3:00-4:00
window.
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(a) Generalized Hawkes: BBBY
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(b) Poisson: BBBY
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(c) Generalized Hawkes: MSFT
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(d) Poisson: MSFT
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(e) Generalized Hawkes: TEVA
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(f) Poisson: TEVA

Figure 6.5: Autocorrelation function of the PIT quantities when constrained to n = p = 2,
η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I for
the 2:00-3:00 window. The blue lines indicate 95% confidence intervals.
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(a) Generalized Hawkes: BBBY
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(b) Poisson: BBBY
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(c) Generalized Hawkes: MSFT
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(d) Poisson: MSFT

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

(e) Generalized Hawkes: TEVA
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(f) Poisson: TEVA

Figure 6.6: Autocorrelation function of the PIT quantities when constrained to n = p = 2,
η(0) = 0, η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I for
the 3:00-4:00 window. The blue lines indicate 95% confidence intervals.
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6.1.3 Model Validation: Probability-Probability Plots

By the theory of point processes, it is well known that for any point process {Pt}t≥0 with

unique points and lim
t→∞

Pt = ∞, there exists a random time change t 7−→ τ(t) such that

{Pτ(t)}t∈R+ is a Poisson Process with unit intensity (see Daley and Vere-Jones (2007)). In

this section, we will perform a random time-change and construct probability-probability

(P-P) plots55 for the time-changed process as a diagnostic for model appropriateness.

In the classical ρ = 1 case, the intensity process λt is observable. In this case, to convert

{N−t + N+
t }t into a Poisson Process, we know exactly what this random time change

should be and is given by

Ti 7−→
Ti∫

0

(λ−s + λ+
s )ds. (6.2)

However, for the full model, λt is not F t measurable. So we must estimate it given the

data. We propose the following random time change for the purpose of generating a P-P

plot:

Ti 7−→
Ti∫

0

(
λ̂−s + λ̂+

s

)
ds (6.3)

where λ̂t is taken to be the mean of the F ti−1
measurable particles at time t (propagated

forward with exponential decay). The reason that we do not want to take λ̂t as the mean

of the F t-measurable particles is because we do not want λ̂t, for t ∈ (ti−1, ti), to contain

any information about Ti.

Figure 6.7 is a comparison of P-P plots between the classical Hawkes model (ρ = 1),

the full model, and the Poisson model. The jump sizes in the classical Hawkes case are

scaled down to reflect the increase in ρ to ρ = 1 (the mean jump size and long run mean

activity rates are both preserved).

Notice how the time changed quantiles of the full model better track the exponential

quantiles. Divergence of dense clusters of points in the P-P plot from the 45◦-line can

be interpreted as model inadequacy, and even more so when the P-P plot possesses

discernable curvature. Such patterns are experienced throughout the collected data.

These plots continue to expose the drastic inadequacy of the Poisson model over the

classical Hawkes model, and further supports the choice for a model that is more general

than the classical Hawkes.

55A P-P plot compares the empirical cumulative distribution function (CDF) of a dataset with a
specified theoretical CDF.
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(a) BBBY – 2:00-3:00
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(b) BBBY – 3:00-4:00
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(c) MSFT – 2:00-3:00
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(d) MSFT – 3:00-4:00
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(e) TEVA – 2:00-3:00
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(f) TEVA – 3:00-4:00

Figure 6.7: Exponential P-P plots when constrained to n = p = 2, η(0) = 0, η11(1) =
η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm I.
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6.2 Statistical Results: Generalized Latent Hawkes

Process when η(0) ≥ 0

In this section, we apply Algorithm II, as described in Section 5.4.2, to the symmetric

and non-symmetric 2-dimensional Generalized Latent Hawkes model. This differs from

the statistical analysis in Section 6.1 in that we do not impose the constraint η(0) = 0

(recall that the inequality η(0) ≥ 0 should be interpreted element-wise). To ensure

identifiability and numerical stability (as discussed in Section 5.3.2), we also impose that

each element of |η(1)−η(0)|, as well as ρ and 1−ρ, are larger than some positive constant

(0.01 in this case).56

As in Section 6.1.1, we perform a calibration to disjoint 60 minute windows between

10:00am and 4:00pm for each day in May 2011. The analysis is performed for the three

tickers BBBY, MSFT, and TEVA. See Tables 6.6 and 6.7 for the means and standard de-

viations (taken over all 60-minute windows) of parameter estimates. Notice that the

elements of η(0) not being statistically different from zero, in addition to the elements of

η(0) being small relative to η(1), suggests that the constraint η(0) = 0 imposed on the

data in Section 6.1 may in fact be a valid one. Although one can compute p-values to

test such a hypothesis, the fact that the true model is not an element of the parameter

space will certainly skew the results of such a test.

Again, there is little qualitative difference between the pairs of parameters associated

with symmetry (i.e. (β1, β2), (η12, η21), etc). As a parallel to the analysis in Section

6.1.1, Table 6.8 provides the relevant empirical correlations for confirming that these

pairs of estimators are not negatively correlated.

Finally, to investigate the stability of the parameter estimates, histograms depicting their

empirical distributions are provided in Figure 6.8. As the purpose of this section is simply

to display Algorithm II producing meaningful estimators on real data (where Algorithm

I would fail to do so), goodness of fit analysis has been omitted.

56The additional constraint on |η(1)−η(0)| is to avoid the case where they are equal and ρ would not
be unique. The additional constraint on ρ is to avoid the case when η(k) has zero probability for some
k. Both of these scenarios would result in a non-identifiable model.
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BBBY MSFT TEVA

mean (std) mean (std) mean (std)

ρ̂ 0.755 (0.205) 0.451 (0.102) 0.747 (0.236)

β̂ 96.69 (23.56) 85.58 (27.04) 107.49 (26.56)
η̂11(0) 7.96 ( 7.97) 2.81 ( 3.59) 8.67 ( 9.85)
η̂11(1) 44.81 (16.44) 86.67 (24.47) 55.54 (18.08)
η̂12(0) 3.05 ( 2.27) 2.20 ( 2.66) 4.58 ( 3.85)
η̂12(1) 5.48 ( 2.25) 12.60 ( 4.53) 9.52 ( 3.78)

θ̂ 0.081 (0.034) 0.156 (0.061) 0.107 (0.050)

E[η11|Θ̂] 31.89 ( 8.62) 39.12 (14.12) 39.19 (12.76)

E[η12|Θ̂] 4.04 ( 1.64) 5.60 ( 2.12) 6.72 ( 2.52)
LRM 0.136 (0.056) 0.356 (0.151) 0.203 (0.098)

Table 6.6: Mean and standard deviations of estimators on historical data when n = p = 2,
η11(1) = η22(1), η12(1) = η21(1), β1 = β2, θ1 = θ2, and using Algorithm II with 200
particles. Total number of free parameters is 7. LRM refers to the long run mean of
activity rate of any component of Nt. Sample consists of disjoint 60-minute windows
between 10:00am and 4:00pm from May 2011.
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BBBY MSFT TEVA

mean (std) mean (std) mean (std)

ρ̂ 0.769 (0.201) 0.460 (0.085) 0.749 (0.211)

β̂1 94.71 (30.13) 87.24 (30.07) 106.18 (29.35)

β̂2 102.50 (30.76) 88.43 (31.67) 113.54 (33.37)
η̂11(0) 6.42 ( 5.99) 2.19 ( 2.60) 5.65 ( 6.89)
η̂11(1) 43.47 (16.41) 87.01 (27.78) 57.19 (20.27)
η̂12(0) 2.38 ( 1.84) 1.20 ( 1.65) 3.67 ( 3.28)
η̂12(1) 5.70 ( 2.87) 13.88 ( 5.81) 9.63 ( 4.12)
η̂21(0) 2.57 ( 1.56) 1.23 ( 1.82) 3.94 ( 3.31)
η̂21(1) 5.35 ( 2.39) 12.68 ( 5.32) 9.39 ( 4.46)
η̂22(0) 5.61 ( 6.02) 3.14 ( 3.48) 5.82 ( 6.17)
η̂22(1) 46.41 (20.27) 86.51 (27.75) 55.12 (20.67)

θ̂1 0.083 (0.035) 0.166 (0.080) 0.112 (0.055)

θ̂2 0.082 (0.034) 0.151 (0.057) 0.109 (0.051)

E[η11|Θ̂] 31.79 (10.11) 40.07 (15.02) 40.44 (11.98)

E[η12|Θ̂] 4.32 ( 2.33) 6.33 ( 2.74) 7.02 ( 3.27)

E[η21|Θ̂] 4.05 ( 1.86) 5.73 ( 2.38) 6.79 ( 3.12)

E[η22|Θ̂] 33.08 (10.77) 39.73 (14.74) 38.95 (12.18)
LRM1 0.139 (0.060) 0.373 (0.183) 0.211 (0.105)
LRM2 0.134 (0.056) 0.347 (0.144) 0.197 (0.096)

Table 6.7: Mean and standard deviations of estimators on historical data when n = p = 2
and using Algorithm II with 200 particles. Total number of free parameters is 13. Sample
consists of disjoint 60-minute windows between 10:00am and 4:00pm from May 2011.

BBBY MSFT TEVA

corr(β̂1, β̂2) 0.184 0.518 0.264
corr(η̂11(0), η̂22(0)) 0.510 0.018 0.291
corr(η̂11(1), η̂22(1)) 0.399 0.554 0.411
corr(η̂12(0), η̂21(0)) 0.147 0.250 0.294
corr(η̂12(1), η̂21(1)) 0.161 0.476 0.310

corr(θ̂1, θ̂2) 0.844 0.663 0.791

Table 6.8: Sample correlation of seletced pairs of estimators when the calibration does
not impose symmetry for general η(0) ≥ 0.
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Figure 6.8: Frequency of parameter estimates when constrained to n = p = 2, η11 = η22,
η12 = η21, β1 = β2, θ1 = θ2, and using Algorithm II.
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6.3 Algorithmic Trading in a Single Asset

Recall that the market maker in Chapter 3 solves the stochastic control problem

Φ(t, x, s, q, α,λ,κ) = sup
(δ−u ,δ

+
u )t≤u≤T∈A

E(t,x,s,q,α,λ,κ)

[
XT + qTST − φ

∫ T

t

q2
s ds

]
, (6.4)

where x is her cash reserve, s is the asset’s midprice, q is her current inventory, α is the

short-term drift in the asset’s midprice, λ is the MO intensity function, κ is the shape

parameter for the depth of the LOB, and we are optimizing over LO quote depths δ±.

The optimal market making strategy, as stated in Corollary 3.5.3, is given by

δ±∗ = δ±0 +B(δ±0 ;κ±)

{
±S±λ

(
Et
[∫ T

t

αu du

])
+ φ

(
±S±λ bφ + (1∓ 2q)(T − t)

)}
(6.5)

with explicit expressions given for each term in Section 3.5.3. Recall that, in addition

to the risk-neutral LO quote δ±0 , the optimal spreads have explicit dependence on the

expected integrated drift Et
[∫ T

t
αu du

]
, the imbalance in the rates of incoming MOs via

φbφ, and the inventory control term φ(1∓ 2q).

We use the parameter estimates from Table 6.9 (Sample period is Jan-Apr 2011), in

conjunction with our SMC particle filtering methods of Section 5.5.2, to test the effec-

tiveness of this single asset marking making strategy on real data57 from May 2011. The

per-second sample standard deviation (using all daily price differences for the stated cali-

bration period and rescaling appropriately) is also reported.58 Observe that if were to use

the parameter estimates from Table 6.1 in this strategy, then this would be considered in

sample testing and would violate the condition that any strategy should be adapted to

F t. This distinction (between using the mean of Jan-May versus Jan-Apr estimators),

however, does not have any material impact on results (compare Tables 6.1 and 6.9).

The high frequency trader (HFT) will make markets in 3 different equities (BBBY, MSFT,

and TEVA – treated individually)59 between 10:00am and 3:30pm on each business day.

She will also be required to be flat (q = 0) at each 5 minute interval. Because of this

condition, the HFT sets T = 300 seconds as the trading horizon in the optimal strategy

57The backtesting of this strategy requires Level II financial data because we require knowledge of the
entire limit order book.

58Because using an incorrect value for σ is equivalent to using a different inventory-aversion level φ,
we only seek an approximate estimate of σ. In fact, recall that the optimal limit quote posting depth
δ±t is free of σ (see Corollary 3.5.3). Hence, σ̂ is only used when calculating mean inventory risk.

59Backtesting for BBBY and MSFT was performed on data from the NASDAQ exchange. Backtesting
for TEVA was performed on data from the NYSE exchange.
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BBBY MSFT TEVA

mean (std) mean (std) mean (std)

ρ̂ 0.768 (0.173) 0.410 (0.089) 0.770 (0.167)

β̂ 94.41 (26.99) 106.27 (26.90) 115.20 (34.39)
η̂11(1) 49.09 (16.51) 127.33 (31.13) 61.35 (19.28)
η̂12(1) 6.63 ( 2.36) 19.68 ( 6.63) 12.12 ( 4.35)

θ̂ 0.086 (0.043) 0.158 (0.078) 0.104 (0.055)
σ̂ 0.0039 – 0.0018 – 0.0036 –

Table 6.9: Fitted parameters to be used in the backtesting of our single asset market
making strategy. Sample period is Jan-Apr 2011.

Parameter Value

κβ 10
κη 10
κν 25
κθ 50
ζ 2
σα 0.01
ε 0.04
T 300

lot size 100 shares

Table 6.10: Other model parameters to be used in the backtesting of the single asset
market making strategy.

given in Corollary 3.5.3. The other parameters in the model are given in Table 6.10.60

Note that one unit of inventory will correspond to 100 shares of the equity. Although

we simply use the estimators in Table 6.9 over the entire month of May, in practice one

would periodically update these estimates using the data from the previous 30-60 minute

window. With such a continuous calibration procedure, the strategy’s performance may

be significantly improved.

60These are taken to be the same as in the simulation study of Section 3.6 as they provide reasonable
estimates for LOB volume and suspected short-term drift behaviour.
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6.3.1 The Inclusion of Market Orders

As demonstrated in Section 2.4, the ability for the HFT to execute market orders is

valuable. This effect is accentuated when the investor faces the strong adverse selection

effects present in real financial markets and aggressively wants to take liquidity from the

market to acquire a favourable position (or liquidate an unfavourable one).

However, the inclusion of market orders turns this problem into a combined impulse

stochastic control problem. The corresponding Hamilton-Jacobi-Bellman equation will

then be a Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) of the form

of (2.13) and we lose analytic tractability in the asymptotic regime that the problem in

Chapter 3 was solved in. Instead of resorting to a numerical scheme to solve the problem

(with 5 continuous spatial dimensions in addition to inventory and time), we impose a

specific ad-hoc criteria of when to execute market orders to combat adverse selection, as

described below.

The investor submits a market buy order at time t whenever the following two conditions

are met: E
[
t+1∫
t

αudu

∣∣∣∣ F t] > ᾱ (the existence of a sufficiently strong directional signal),

where ᾱ > 0 is some prespecified threshold and referred to as the investor’s MO aggression

level, and δ−t = 0 (which represents the HFT’s willingness to trade that way as it jointly

incorporates information about qt, λt, κt, and αt). The financial intuition behind the first

condition is that it represents the expected change in the midprice over the next 1 second.

The threshold ᾱ can depend on many things, but it should at least be large enough to

cover fees, the bid/offer spread incurred for market order submission, etc. The conditions

are similar for the submission of a market sell order with E
[
t+1∫
t

αudu

∣∣∣∣ F t] < −ᾱ and

δ+
t = 0.

The quantity E
[
t+1∫
t

αudu

∣∣∣∣ F t] is the expected change in the midprice over the next 1

second and is exactly what the model predicts the mean profit and loss (PnL) of holding

one unit of the asset (and liquidating at the midprice) to be. The fact that we use 1

second is not particularly important here. The only requirement is that it should be

larger than the 1/4-life61 of the effect of any individual event to ensure the horizon is

long enough for the investor to realize a large proportion of expected profits by holding

an open position. The lifetime of any single instance of the signal will be dictated by

β and ζ, and once (αt, λt, κt) returns close to its mean-reversion state, the quantity

61The choice of 1/4 here is an arbitrary one. It is close enough to 0 so that the investor holds the asset
long enough to accumulate this non-zero drift, but not so close to 0 such that the investor is holding
this risky position long after the directional movements have dissipated.
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E
[
t+u∫
t

αsds

∣∣∣∣ F t] will (effectively) be 0 for all u ≥ 0, ensuring that the MO aggression

signal only depends on evolution until the first reset to (αt, λt, κt) ≈ (0, θ, θκ).

6.3.2 Performace of the Strategy

Daily PnL results are reported for inventory-aversion levels φ = 10−8, 10−7, 10−6, 10−5,

and MO aggression levels ᾱ = 0.02, 0.05, 0.10, 0.20 for each of the three equities BBBY,

MSFT, and TEVA, in Tables 6.11, 6.12, and 6.13, respectively. The results presented are

on a per day basis and are consistent with those in Section 3.6. That is, increasing the

investor’s inventory aversion parameter decreases her mean PnL, standard deviation of

PnL, and also mean inventory risk62 (i.e. she holds less risk throughout the strategy).

To give some perspective into the mean inventory risk (MIR) risk metric, note that the

strategy that holds q̃ units for the entire strategy would have an MIR of 3000 q̃2, 670 q̃2,

and 2600 q̃2 for each of the three equities, respectively.

Furthermore, the more aggressive the investor is to submit MOs in an attempt to capture

short term alpha (i.e. when ᾱ is small), the greater her mean PnL will be. Again, this

is at the expense of having larger variance and holding more risk throughout the day.

Similar to the analysis of inventory aversion level φ, the MO aggression level ᾱ will

ultimately depend on the risk profile of the investor.

To put the results of Tables 6.11 - 6.13 into perspective, we look at the distribution of the

maximum inventory held by the investor (for each value of ᾱ) for each 5-minute interval

in Figure 6.9. This will give some insight into capital and margin requirements. There

is also a maximum inventory level of 20 units (long or short) being imposed to prevent

the HFT’s inventory from becoming too large (in absolute value). The more frequent

occurrence of attaining this maximum inventory constraint for MSFT (relative to BBBY

and TEVA) is due to the smaller fitted volatility σ̂, as reported in Table 6.9.

It is clear that the less aggressive the investor is to submit MOs (larger ᾱ), the smaller her

maximum inventory level is. Conversely, the more aggressively the investor submits MOs

to capture small deviations of αt from 0, the larger her maximum inventory level is, which

may require more capital to fund such a strategy. In the most conservative case where

the investor must fund the entire position without leverage, each of the three strategies

would require approximately $55,000 in capital.63 Given that the capital requirements

62Recall that inventory risk in the single asset case is defined as σ2
T∫
0

q2
sds.

63This is calculated as the cost to fund either 900 shares in BBBY, 2000 shares in MSFT, or 1000 shares
in TEVA, as required by the strategy’s accumulated inventory (the distribution of this quantity is shown
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BBBY

ᾱ 0.02 0.05 0.10 0.20

φ = 10−8

mean 79.64 73.55 12.10 -2.08

(std) (137.82) (135.16) (80.20) (56.76)

(MIR) (23,741) (19,884) (6,112) (1,293)

φ = 10−7

mean 79.30 72.78 12.01 -2.18

(std) (136.83) (134.55) (80.04) (56.59)

(MIR) (23,604) (19,781) (6,070) (1,253)

φ = 10−6

mean 69.70 65.23 10.13 -3.46

(std) (131.70) (131.21) (80.07) (55.90)

(MIR) (22,125) (18,746) (5,850) (1,240)

φ = 10−5

mean 45.69 46.85 10.87 -4.42

(std) (124.11) (118.57) (76.31) (59.12)

(MIR) (12,154) (12,304) (3,971) (670)

Table 6.11: Daily PnL results for BBBY. The asset’s daily closing price ranged from
approximately $45 to $58 throughout the trading period.

are more or less equal, it is clear that market making on MSFT was the most profitable,

followed by TEVA and BBBY.

The HFT strategy also performs the best for MSFT when looking at the strategy’s Sharpe

Ratio64. Furthermore, it is also the most profitable when considering how much PnL

is generated for each unit of MIR held by the investor. For every thousand units of

mean inventory risk, the HFT earns approximately $7 in mean PnL. Compare this with

BBBY and TEVA where this ratio is only about $3 and $4 per thousand units of MIR,

respectively.

in Figure 6.9) when the spot prices were at their maximum values of $58, $29, and $57, respectively.
64The Sharpe Ratio is defined as a trading strategy’s mean return above a benchmack (we take zero in

this thesis because we are concerned with intraday trading) divided by the standard deviation of return.
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MSFT

ᾱ 0.02 0.05 0.10 0.20

φ = 10−8

mean 521.46 445.13 217.40 -0.62

(std) (232.65) (231.84) (189.90) (101.18)

(MIR) (71,320) (62,864) (36,402) (10,657)

φ = 10−7

mean 520.03 444.98 217.69 -0.14

(std) (231.88) (231.18) (190.04) (101.30)

(MIR) (70,351) (62,466) (36,388) (10,636)

φ = 10−6

mean 493.63 432.08 217.45 -0.85

(std) (238.28) (237.31) (192.24) (101.35)

(MIR) (64,475) (60,334) (36,048) (10,410)

φ = 10−5

mean 260.70 220.48 104.38 -22.85

(std) (175.17) (170.66) (156.67) (93.84)

(MIR) (34,677) (35,995) (22,830) (6,608)

Table 6.12: Daily PnL results for MSFT. The asset’s daily closing price ranged from
approximately $25 to $29 throughout the trading period.
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TEVA

ᾱ 0.02 0.05 0.10 0.20

φ = 10−8

mean 194.53 188.90 13.39 -44.76

(std) (390.24) (372.03) (245.26) (171.54)

(MIR) (49,303) (42,950) (16,378) (4,609)

φ = 10−7

mean 192.29 186.87 13.39 -44.76

(std) (388.34) (368.79) (245.26) (171.54)

(MIR) (49,122) (42,872) (16,378) (4,609)

φ = 10−6

mean 186.89 183.91 10.39 -45.19

(std) (373.56) (361.22) (246.54) (166.90)

(MIR) (46,390) (41,065) (16,181) (4,331)

φ = 10−5

mean 60.48 68.16 -34.20 -53.94

(std) (250.02) (254.07) (225.55) (151.91)

(MIR) (22,245) (23,406) (9,649) (2,431)

Table 6.13: Daily PnL results for TEVA. The asset’s daily closing price ranged from
approximately $45 to $57 throughout the trading period.
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ᾱ = 0.02
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Figure 6.9: Distribution of max
0≤t≤T

{|qt|} for various MO aggression levels, ᾱ. The inventory

aversion level is fixed at φ = 10−7. There are 1,386 5-minute trading intervals in this
sample.



Chapter 7

Final Conclusions

7.1 Summary of Contributions

This thesis derives optimal high frequency trading strategies for a variety of asset classes

via stochastic optimal control theory. It is complete in the regard that calibration and

estimation methodologies are provided and practical, numerical considerations are ad-

dressed, where appropriate. The major contributions to current academic literature are

summarized below.

• Market making in a single asset

Chapter 3 addresses the problem of market making in a single asset in the presence

of adverse selection and trade clustering. It is the first piece to explicitly derive an

optimal market making strategy while accounting for asymmetric information in

the market. The arrival of market orders is modeled as a bivariate Hawkes process,

where the distinction is made between an MO being executed by an informed agent

versus an uninformed one. Equipped with the tools presented in Chapter 5, the

strategy is backtested on real data and yields positive results for each of the three

considered stocks. The addition of a provision for the market maker to be aggressive

and submit MOs when she detects trading from informed agents further illustrates

the need to incorporate adverse selection in market microstructure models.

• Algorithmic trading in multiple assets

Chapter 4 develops a mathematical framework for an economy with multiple as-

sets. Furthermore, these assets are permitted to have a structural dependence and

bid/offer spreads that yields a non-trivial no-arbitrage region for their midprices.

151
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An optimal HFT strategy is derived for a profit maximizing agent that is inventory

averse. We show that this strategy consists of two main components, a market

making component and a statistical arbitrage component, that contribute to the

strategy at complimentary times. This strategy appears to be the first to exploit

the specific structure that is present in overcomplete markets. The added value

to the investor is shown to be substantial when considering the over-completeness

of the market versus treating the assets as simply correlated. Finally, numeri-

cal considerations are made and a dimensional reduction to the explicit numerical

discretization scheme is also provided.

• The Generalized Latent Hawkes process

In response to the novel, yet seemingly complex, model presented in Chapter 3,

two effecient, complimentary calibration methodologies are supplied. By utilizing

Sequential Monte Carlo methods, a stepwise algorithm to construct on the fly

estimators of the latent intensity process is also provided. The results developed in

Chapter 5 provide the necessary bridge for the real-time application of the single

asset market making strategy derived in Chapter 3. Furthermore, the generalization

to allow for random, unobservable jumps is a feature that is a currently unexplored

area in current literature and, as outlined in Chapter 5, has practical application

in a variety of disciplines.

7.2 Future Directions

Although there are several directions upon which the research presented in this thesis

can be further explored, the author would like to highlight some that he feels will be of

the greatest impact on both the academic community and industry. Namely, extensions

to other markets that do not operate through a centralized exchange with price-time

priority, further developing the multiple asset framework described in Chapter 4, and

making use of the Generalized Latent Hawkes model presented in Chapter 5 to better

analyze and describe event data65. Each of these are summarized below.

• Stylized adverse selection models

The models for short-term alpha presented in Sections 3.4 and 4.4.1 are just two

ways to directly incorporate adverse selection into a microstructure model. Al-

though these models offer qualititative features that are currently consistent with

65Although this thesis primarily focuses on high frequency trading and quantitative finance, the author
acknowledges the vast application of Hawkes processes in other disciplines and encourages academics in
these fields to explore.
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what is observed in real data, it is quite possible that a shift in agent behaviour will

prompt the development of more stylized and involved models of adverse selection.

• Exotic multiple asset frameworks

Multiple asset economies in many asset classes have inherent structure different

from being overcomplete, as was explored in Chapter 4. A prominent example is in

foreign exchange (FX) where the product (as opposed to the linear combination in

the overcomplete setting) of three traded assets is a constant.66 Whether it be in

the context of optimal liquidation, hedging, or simply profit/utility maximization,

HFT in economies with exotic constraints on their midprices continues to be an

interesting and impactful area of research.

• HFT with throttled activity

In an active effort to thwart the ongoing technological arms race, some exchanges

(e.g., EBS and Reuters) have begun to throttle activity. All activity sent to this

exchange during the throttling window is amalgamated (according to some rules

specific to each exchange) and then executed all at once at the end of the window.

Typical lengths of of throttling windows are of the order of 100ms, but this varies

according to the exchange.

As one might expect, this complicates the continuous time framework that most

models are based on. In fact, even if one poses a model in event-space, where each

discrete time step corresponds to a single market order submission or a limit order

submission or cancellation, throttling will entail many trades occuring within the

same event. The lack of event time granularity of individual event data, since all

data is time stamped at the end of the throttling window, is also a major technical

complication. This appears to a be a completely unexplored area of research that

would be applicable in FX markets.

• HFT without a centralized exchange

Most microstructure models and HFT strategies are hinged on the idea of a single

centralized exchange with a limit order book that all trades pass through, thus

promoting transparancy in market activity. However, some asset classes (e.g., FX)

do not trade on a single centralized exchange.67 Furthermore, a large portion of the

traded volume can come from proprietary platforms supplied by large firms, thus

making trade data inaccessible by anyone outside that firm.

Statistical complications arise when attempting to use trade data provided by an

exchange as a proxy for the entire market. From a financial point of view, there is

66Consider the three traded currency pairs GBPUSD, EURUSD, and EURGBP as an example of such an
economy where the relation EURUSD = EURGBP× GBPUSD holds true up to the assets’ bid/offer spreads.

67Although there are exchanges that amalgamate limit quotes and execute MOs in this way, issues
such as latency and throttling cause complications when attempting to amalgamate them into one LOB.
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also a lack of transparency in what prices other market making firms are providing

their clients through their own platforms making it difficult to determine another

firm’s fill probabilities when sending a particular set of quotes to a client. Acknowl-

edging these market intricacies in a microstructure model and accounting for them

in an HFT strategy has immediate industrial application and is ripe for academic

development.

• The Generalized Latent Hawkes model

Chapter 5 outlines the various applications of the Hawkes process in seismology,

neuroscience, genetics and molecular biology, and the social sciences. Section 5.6

details some other applications of the Generalized Latent Hawkes process within

the context of quantitative finance. Although this thesis takes great strides to

improve the practicality and efficiency of standard likelihood estimation methods

within this class of models, it is believed that the derived methods can be further

developed on both an efficiency and stability basis.



Appendix A

Acronyms and Notation

A.1 Acronyms

AT Algorithmic trading

BBO Best bid and offer

bp Basis point

CDF Cumulative distribution function

DGP Data generating process

DPE Dynamic programming equation

DPP Dynamic programming principle

F-K Feynman-Kac

FP Fill probability

FX Foreign exchange

HF High frequency

HFT High frequency trading/trader

HJB Hamilton-Jacobi-Bellman

iid Independent and identically distributed

K-S Kolmogorov-Smirnov

LCRL Left continuous with right limits

LO Limit order

LOB Limit order book

LLH Log-likelihood
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LRM Long run mean

MCEM Monte Carlo expectation maximization

MIR Mean inventory risk

MLE Maximum likelihood estimation/estimator

MM Market maker

MO Market order

ODE Ordinary differential equation

P-P Probability-probability

PDE Partial differential equation

PIDE Partial integro-differential equation

PIT Probability integral transform

PnL Profit and loss

QVI Quasi-variational inequality

RCLL Right continuous with left limits

SDE Stochastic differential equation

SMC Sequential Monte Carlo



Appendix A. Acronyms and Notation 157

A.2 Notation for Chapter 3

Stochastic Processes:

αt Drift process of St

Bt Standard Brownian Motion

δ−t , δ
+
t Limit buy/sell order quote depth as measured from St

ε−k , ε
+
k , ε̃

−
k , ε̃

+
k iid sequences of exponential RV’s

κt = (κ−t , κ
+
t ) Parameter describing the shape of the limit buy/sell side of the LOB

λt = (λ−t , λ
+
t ) Intensity of total market orders (M

−
t + M̃−

t , M
+

t + M̃+
t )

Λ−t , Λ+
t Limit buy/sell fill rate facing the trader

m±t (u) Mean of λ±u conditional on Ft
m̃±t (u) Mean of κ±u conditional on Ft
M
−
t , M

+

t Counting process for influential market sell/buy orders

M̃−
t , M̃

+
t Counting process for non-influential market sell/buy orders

N−t , N
+
t Counting process for filled limit buy/sell orders

qt Inventory process

St Midprice process

Wt Standard Brownian Motion

Xt Cash process

Z±t Poisson processes with intensity µ± that cause jumps in λt and κt

Functions/Random Variables:

a·, b·, c· Functions in the exact expansions of g·

B(δ;κ) Function that appears in the expansion of the optimal control

δ±∗ Asymptotic optimal control

δ±0 , δ
±
· Functions in the linear expansion of δ±∗

δ±∗opt Exact optimal control

ε±, ε̃± Shorthand for ε±k , ε̃
±
k

g Part of the value function that is in excess of x+ qs

g0, g· Functions in the linear expansion of g

h±(δ;κ) Fill probability function on the limit buy/sell side of the LOB

Φ Value function
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Constants:

a± Scaled versions of E[ε±] with scale parameter ε

ã± Scaled versions of E[ε̃±] with scale parameter ε

A

(
β − ηρ −νρ
−νρ β − ηρ

)
β Mean reversion rate of λ±t

βκ Mean reversion rate of κ±t

ctrans Multiplicative liquidation transaction cost at time T

d± Shift parameter in the exponential and power FP functions

ε Multiplicative scale parameter of E[ε±],E[ε̃±]

η Jump size of λ±t due to arrival of M
±
t

η̃ Jump size of λ±t due to arrival of Z±t

ηκ Jump size of κ±t due to arrival of M
±
t

η̃κ Jump size of κ±t due to arrival of Z±t

γ± Parameter in the power FP function

µ± Intensity of Z±t

ν Jump size of λ±t due to arrival of M
∓
t

ν̃ Jump size of λ±t due to arrival of Z∓t

νκ Jump size of κ±t due to arrival of M
∓
t

ν̃κ Jump size of κ±t due to arrival of Z∓t

φ Inventory-aversion parameter

ρ Probability that any market order is influential

σ Volatility of St

σα Volatility of αt

ς max(φ, |α|,E[ε±])

θ Mean reversion level of λ±t

θκ Mean reversion level of κ±t

T Trading time horizon (seconds)

υ Constant term in the drift of St

ζ Mean reversion rate of αt

ζ

(
βθ + η̃µ− + ν̃µ+

βθ + ν̃µ− + η̃µ+

)
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Other:

A Set of all bounded Ft-previsible functions

Ck Set of k-times continuously differentiable functions

Ft Element of the natural filtration generated by all processes

F t Element of the natural filtration generated by
{
St, ε

±
M±t

, M±
t , N

±
t

}
F The filtration {Ft}0≤t≤T

L The part of the generator of the processes αt,λt,κt, and Z±t that does not

depend on δ±t

Ω Sample space

P Probability measure on (Ω,FT ) equipped with filtration F
S±· , S̃±· Mean shift operators

S±· Shift operators
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A.3 Notation for Chapter 4

Stochastic Processes:

αt Drift process of St

Bt Standard Brownian Motion in n dimensions

δt = (δ−t , δ
+
t ) Vector of LO quote depths with components δ±i,t

d(k) Sequence of random variables representing immediate market impact

e(k) iid sequence of exponential random variables with mean 1

M−
t , M+

t Vector of counting processes for the investor’s filled buy/sell LOs

Nt Total number of MOs from other market participants

N t Total number of MOs from all market participants

N−t , N+
t Vectors of counting processes for MOs from other market participants

with components N±i,t

N
−
t , N

+

t Vectors of counting processes for MOs from all market participants

with components N
±
i,t

N̂−t , N̂+
t Vectors of counting processes for MOs from informed agents

qt Inventory process

St Midprice process with component Sit

Ŝt Unreflected version of St

ς Sequence represnting the investor’s MO buy/sell indicator with element ςi

τ Sequence of stopping times representing MO submissions with element τi

Xt Cash process

Functions/Random Variables:

g Part of the value function that is in excess of x+ q · s
gdt,ds,Q Discrete approximation of g

Γ Function related to dimensional reduction in spatial variable s

h−i (δ), h+
i (δ) Fill probability function on the limit buy/sell side of the LOB for asset i

`(q) Penalty function

Φ Value function
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Constants:

0 (n− n′)-dimensional vector of 0’s

b Element of Rn used in the condition in definition of over-complete market

ei Vector with 1 in the ith position and 0 elsewhere

ε Scale factor for Ψ

γ Terminal liquidation market impact parameter

κ−i , κ
+
i Scale parameters in exponential fill rate functions

λ−i , λ
+
i Intensity of market orders counting processes N−t , N

+
t

n Number of risky assets

n′ Dimensionality after reduction

n Normal vector

φ Inventory penalty parameter

Ψ Mean jump size matrix for αt

Q Upper limit on inventory for each asset

ρ Probability an MO is influential

σ Volatility matrix

T Trading horizon

T Investment horizon in the condition in definition of over-complete market

T1, T2 Maturity of first and second nearby futures contracts in examples

ξ Vector of spreads with component ξi

ζ Mean reversion rate matrix for αt

Other:

A No-arbitrage region

∂A Boundary of the set A
A Closure of the set A
A′ Dimensionally reduced no-arbitrage region

A′ Closure of A′

B Subspace containing all vectors b from definition of over-complete market

B⊥ Orthogonal compliment of B

Ck Set of k-times continuously differentiable functions

Ck
b Set of k-times continuously differentiable functions with bounded derivatives

∆±i Difference operator associated with a filled LO
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Ft Element of the natural filtration generated by (St, M±
t , N±t , N

±
t )

F The filtration {Ft}0≤t≤T

L2 Set of all square-integrable functions on (Ω,FT ,P)

L Infinitesimal generator of St under Assumption 4.2.4

Mdt,ds,Q Discrete dynamic evolution operator for the impulse region

Ω Sample space

P Probability measure on (Ω,FT ) equipped with filtration F
Sds n-dimensional regular partition of the dimensionally reduced s-grid

Sdt,ds,Q Discrete combined dynamic evolution operator

Tdt Regular time partition

T dt,ds,Q Discrete dynamic evolution operator for the continuation region

T̂ dt,ds,Q Discrete second order central difference operator

X Set of all admissible strategies

YQ Subset of Zn that corresponds to inventory with maximum Q

∇ Gradient operator in the s component

〈 · 〉t Quadratic variation operator
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A.4 Notation for Chapter 5

Stochastic Processes:

ηk iid sequence of random matrices

ηt Shorthand for η∑
Ni,t−

λt Intensity process of Nt

Nt Vector of counting processes with ith component Ni,t

Functions/Random Variables:

ηij (i, j) element of η

η Random matrix with the same distribution as any element of η1

f(x | y) P[λtk ∈ dx |λtk−1
= y]

g(t, l | y) P[Tk(1) ∈ dt, Tk(2) = l |λtk−1
= y]

l(q | y, S1, S2) P[ηtk = ηS1(1)(q) |λtk−1
= y, Tk = S1, Tk+1 = S2]

L Likelihood function

L̄ Pseudo-likelihood function used in Algorithm I

L̃ Isolated likelihood function used in Algorithm I

LMC(Θ; y) Composite marginal likelihood function

m(N) Size of the largest cluster in a data set of size N

ν ρ = 1 MLE of η

Q
(
ξ
∣∣Y ) Maximizer of L̄

ρk, βk, θk, ηk Parameter estimates after k iterations of Algorithm I

ρdiv, βi,div Divergence difference of ρ, βi

ti Time of the ith event with component label

Ti Inter-arrival time of the ith event with component label

Constants:

0 n× n matrix of zeros

1n n-dimensional vector of 1’s

δij Suggested minimum difference in the possible values of ηij

ei n-dimensional unit vector with 1 in the ith component
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ε Tolerance used in renewal point identification

β Mean reversion rate matrix of λt

η(k), ηij(k) kth possible value of η, ηij

In n-dimensional identity matrix

m Cluster size in Algorithm I

M Number of particles in SMC particle filter

n Dimension of Nt

N Total number of points

p Size of the support of η

ρi (i+ 1)th element of ρ

ρ Shorthand for ρ1 when p = 2

ρ Vector of probability weights on the distribution of η

θi, βi ith element of θ, β (when β is diagonal)

θ Mean reversion level of λt

T Upper time limit of sample period

Θ Element of the parameter space

Other:

Cm
k A cluster of m+ 1 points beginning with tk

Ft Element of the natural filtration generated by {Nt}, {ηt}
F t Element of the natural filtration generated by {Nt}
Ω Sample space

P Probability measure on (Ω,FT )
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Supplementary Background Material

This Appendix provides some supplementary material related to results that are used

throughout the body of this thesis.

B.1 Hamilton-Jacobi-Bellman Equations

This section states the Hamilton-Jacobi-Bellman equations for a stochastic control prob-

lem and a combined stochastic control and impulse control problem. For detailed deriva-

tions of these equations, please refer to Øksendal and Sulem (2007).

Define S ⊆ Rk and let {Yt}t≥0 be a (“well-defined”) jump diffusion where the drift,

volatility, and jump measure can be controlled by some other process ut that is assumed

to be RCLL and adapted to Ft. Hence, Yt (or more specifically, Y
(u)
t ) is a controlled

jump diffusion.

The performance criterion is given by

J (u)(t, y) = E(t,y)

 τ∫
t

f(Ys, us)ds+ g(Yτ )1{τ<∞}


where τ = inf{t ≥ 0 : Y

(u)
t /∈ S} and E(t,y)[ · ] is shorthand for E[ · |Yt = y].

Define the value function by

Φ(t, y) = sup
u∈U

J (u)(t, y) (B.1)

165
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where U is the set of admissible controls.

For any (admissible) Markov control ut, denote the generator of Yt by L(u).

Through a dynamic programming argument analogous to that of Section 2.2, the HJB

equation for the value function in (B.1) is:{
∂tΦ + sup

u

{
f(y, u) + L(u)Φ

}
= 0 y ∈ S

Φ(t, y) = g y /∈ S
(B.2)

Now suppose that we are able to intervene with impulse controls. More precisely, define

the impulse control as the following double sequence:

v = (τ1, τ2, . . . ; ς1, ς2, . . . )

where 0 ≤ τ1 ≤ τ2 ≤ . . . are Ft stopping times, and Fτj measurable impulses ςj (j ∈ N).

For a given v, the impulse control affects the controlled process Yt at the impulse times

via

Y (u,v)
τj

= Γ(Yτj− + ∆NYτj , ςj)

for some function Γ, where ∆NYt is the jump in Yt due to a jump in the jump diffusion

component of Yt.

One may also impose a cost function associated with such impulses. This is done by

adding an extra term in the performance criterion:

J̃ (u,v)(t, y) = E(t,y)

 τ∫
t

f(Ys, us)ds+ g(Yτ )1{τ<∞} +
∑
τj≤τ

K(Yτj− + ∆NYτj , ςj)

 .
Now define the value function as

Φ̃(t, y) = sup
(u,v)

J̃ (u,v)(t, y) . (B.3)

Through a dynamic programming argument analogous to that of Section 2.4, the HJB
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quasi-variational inequality (QVI) for the value function in (B.3) is then max

[
sup
u

{
f(y, u) + (∂t + L(u))Φ̃

}
; sup
v∈Z

{
Φ̃(Γ(y, ς))− Φ̃ +K(y, ς)

}]
= 0 y ∈ S

Φ̃ = g y /∈ S
(B.4)

where Z is the set of admissible impulse controls.

B.2 Viscosity Solutions

The results in Appendix B.1 are extremely convenient when the value function Φ is

suffieciently smooth on S (i.e. Φ is C2 on the interior of S and C1 at the boundary).

However, this need not be the case. In such scenarios, the expression LΦ does not make

sense. To this end, we define the notion of viscosity solutions.

Definition B.2.1. Let Φ ∈ C(S).

(i) We say that Φ is a viscosity subsolution of (B.4) if for any t0 ≥ 0, x0 ∈ int(S),

and h(t, x) ∈ C1(R+) ∩C2(Rk) such that h(t0, x0) = Φ(t0, x0) and h(t, x) ≤ Φ(t, x)

on S, we then have h(t, x) satisfying (B.4).

(ii) We say that Φ is a viscosity supersolution of (B.4) if for any t0 ≥ 0, x0 ∈ int(S),

and h(t, x) ∈ C1(R+) ∩C2(Rk) such that h(t0, x0) = Φ(t0, x0) and h(t, x) ≥ Φ(t, x)

on S, we then have h(t, x) satisfying (B.4).

(iii) We say that Φ is a viscosity solution of (B.4) if it is both a viscosity subsolution

and supersolution.

B.3 Feynman-Kac Forumla for Jump Diffusions

Let {Xt}0≤t≤T be a jump diffusion on Rk with P-generator L. Suppose that some function

u(t, x) satisfies the following partial integro-differential equation (PIDE) with boundary

condition:  (∂t + L)u(t, x) + f(t, x) = V (t, x)u(t, x)

u(x, T ) = ϕ(x)
(B.5)
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Lemma B.3.1. Feynman-Kac Formula. The solution to (B.5) has the following

stochastic representation:

u(t, x) = EP

 T∫
t

e
−

s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

ϕ(XT )

∣∣∣∣∣∣Xt = x

 (B.6)

Proof. Suppose u(t, x) is a solution to (B.5) and consider the process

Y (r,Xr) :=

r∫
t

e
−

s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−

r∫
t
V (z,Xz)dz

u(r,Xr) .

It then follows that

Et,x [Y (T,XT )− Y (t,Xt)] = Et,x

 T∫
t

e
−

r∫
t
V
{f + (∂r + L)u− V u} dr

 = 0 .

The first equality is true by Dynkin’s Formula. The second equality is due to the condition

in (B.5). Hence, we have

u(t, x) = Y (t, x) = Et,x [Y (t,Xt)] = Et,x [Y (T,XT )]

= Et,x

 T∫
t

e
−

s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

u(T,XT )


= Et,x

 T∫
t

e
−

s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

ϕ(XT )

 .

It is interesting to note that Lemma B.3.1 is a special case of the result presented in

Equation (B.2) of Appendix B.1 where the set of admissible controls U contains exactly

one element.
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Proofs

C.1 Proof of Lemma 3.2.2

Integrating both sides of (3.2), taking conditional expectation, applying Fubini’s Theo-

rem, and then taking derivative gives the following coupled system of ODEs for m±t (u):

d

du

(
m−t (u)

m+
t (u)

)
+

(
β − ηρ −νρ
−νρ β − ηρ

)(
m−t (u)

m+
t (u)

)
−
(
βθ + η̃µ− + ν̃µ+

βθ + ν̃µ− + η̃µ+

)
=

(
0

0

)
(C.1)

with initial conditions m±t (t) = λ±t . This is a standard matrix equation, and, if A is

invertible, it admits the unique solution(
m−t (u)

m+
t (u)

)
= e−A(u−t)

[(
λ−t
λ+
t

)
−A−1ζ

]
+ A−1ζ . (C.2)

Since A is symmetric, it is diagonalizable by an orthonormal matrix U. Furthermore,

its eigenvalues are β − (η ± ν)ρ. Clearly, the limit u → ∞, mt(u) converges if and only

if β − (η ± ν)ρ > 0, which implies β > (η + ν)ρ since η, ν, ρ ≥ 0.

The remaining case is if A has is not invertivle (i.e. has at least one zero eigenvalue).

However, it is easy to see that in this case, the solution to (C.1) has at least one of m±t (u)

growing linearly as a function of u. Furthermore, if at least one eigenvalue is zero, then

either β = (η − ν)ρ or β = (η + ν)ρ, which lie outside the stated bounds.

169
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C.2 Proof of Proposition 3.5.1

Applying the ansatz of the form on Φ, differentiating inside the supremum in Equation

(3.7) with respect to δ±, expanding g using the specified ansatz, writing δ±∗ = δ±0 +αδ±α +

εδ±ε + φδ±φ + o(ς), and setting the resulting equation to 0 gives our first-order optimality

condition. To this order, the first-order conditions imply that

h±(δ±0 ) + δ±0 h
′
±(δ±0 ) + α

{
δα
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′(δ±0 )

(
S±qλgα − S±λ gα

)}
+ε
{
δε
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′±(δ±0 )

(
S±qλgε − S±λ gε +±ρ a± S±qλgα

)}
+φ
{
δφ
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′±(δ±0 )

(
S±qλgφ − S±λ gφ

)}
= o(ς) .

(C.3)

Observe that the Taylor expansion of h(δ) about δ0 requires the C2 regularity condition

to keep the error of the correct order. The C1 regularity condition ensures that the

global maximizer satisfies (C.3). Setting the constant term in (C.3) to zero yields (3.13).

Setting the coefficients of α, ε, and φ each separately to zero and solving for δα, δε, and

δφ results in (3.11). The finiteness of the optimal control correct to this order is ensured

by the last condition in Assumption 3.3.1.

The existence of a solution to (3.13) is clear by noticing that the solution is a critical point

of the continuous function δh(δ). The critical point exists since δh(δ) is non-positive for

δ ≤ 0, is strictly positive on an open interval of the form (0, d) due to h ∈ C1 (since

h > 0 in an open neighbourhood of δ = 0), and goes to 0 in the limit (when δ →∞) by

Assumption 3.3.1.

To see that the exact values of the optimal controls are non-negative, observe that the

value function is increasing in x. Therefore, Φ(t, x+ δ, ·) < Φ(t, x, ·) for any δ < 0. Since

the shift operators appearing in the argument of the supremum are linear operators, and

h(δ;κ) is bounded above by 1 and attains this maxima at δ = 0, the δ = 0 strategy

dominates all strategies which have δ < 0.

C.3 Proof of Theorem 3.5.2

Inserting the expansion for g and the feedback controls (3.11) for δ into the HJB equation

in (3.7), and carrying out tedious but ultimately straightforward expansions, to order ς,
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Equation (3.7) reduces to

o(ς) = Dg0 + (λ+δ+
0 h+(δ+

0 ) + λ−δ−0 h−(δ−0 ))

+ α
{
q + (D − ζ) gα + λ+ h+(δ0)

[
S+
qλ − S+

λ

]
gα + λ− h−(δ0)

[
S−qλ − S−λ

]
gα
}

+ ε
{
Dgε + λ+ h+(δ0)

([
S+
qλ − S+

λ

]
gε + ρ a+ S+

qλgα
)

+λ− h−(δ0)
([
S−qλ − S−λ

]
gε − ρ a− S−qλgα

)}
+ φ

{
−q2 +Dgφ + λ+ h+(δ0)

[
S+
qλ − S+

λ

]
gφ + λ− h−(δ0)

[
S−qλ − S−λ

]
gφ
}

(C.4)

where D = ∂t+L and the boundary conditions g0(T, ·) = gα(T, ·) = gε(T, ·) = gφ(T, ·) = 0

apply. Clearly, g0 is independent of q and, as seen in Proposition 3.5.1, does not affect

the optimal strategy. Next, perform the following steps: (i) set the coefficients of α, ε,

and φ to zero separately; (ii) write gα, gε, and gφ as in (3.14); and (iii) collect powers

of q, and set them individually to zero.68 Then one finds the following equations for the

functions bα(t), bε(t,λ), bφ(t,λ,κ), and cφ(t):

0 = Dbα − ζ bα + λ+
[
S+
λ − 1

]
bα + λ−

[
S−λ − 1

]
bα + 1 , (C.5a)

0 = Dbε + λ+
[
S+
λ − 1

]
bε + λ−

[
S−λ − 1

]
bε +

{
ρ
(
λ+a+ − λ−a−

)
+
(
µ+ã+ − µ−ã−

)}
bα,

(C.5b)

0 = Dbφ + λ+
[
S+
λ − 1

]
bφ + λ−

[
S−λ − 1

]
bφ − 2h(δ0) (λ+ − λ−) cφ , (C.5c)

0 = Dcφ + λ+
[
S+
λ − 1

]
cφ + λ−

[
S−λ − 1

]
cφ − 1 . (C.5d)

These equations, together with the boundary conditions bα(T, ·) = bε(T, ·) = bφ(T, ·) =

cφ(T, ·) = 0, admit, through a Feynman-Kac argument, the solutions presented in (3.15).

More specifically, we apply the Feynman-Kac formula in Lemma B.3.1 to link the solution

of the derived PIDE back to its stochastic representation, as presented in (3.15).

The functions aα, aε and aφ are independent of q and, since the optimal spreads given

in (3.12) contain difference operators in q which vanish when they act on functions

independent of q, do not influence the optimal strategy.

C.4 Proof of Corollary 3.5.3

By applying Equation (3.14) for gα, gε and gφ in Theorem 3.5.2 to Equations (3.11)

and (3.12) of Proposition 3.5.1 and using the fact that the a, b and c functions are all

68Note that this step is not an asymptotic expansion in q. Rather, it is exact given the prescribed
expansion in the other parameters.
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independent of q, δ∗± reduces, after some tedious computations, to

δ±∗ = δ±0 +B(δ±0 ;κ±)
{
±α bα + ε

(
±S±λ bε + ρ a± bα

)
+ φ

(
±S±λ bφ + (1∓ 2q)(T − t)

)}
.

Next, observing that ±α bα + ε
(
±S±λ bε + ρ a± bα

)
= ±S±λ

(
E
[∫ T

t
αu du

])
gives (3.16).

Finally, let δ±opt denote the exact optimal controls. Using Proposition 3.5.1, we obtain

that δ±opt is non-negative and |δ∗ − δ±opt| = o(ς). Therefore,∣∣max{δ±∗, 0} − δ±opt

∣∣ ≤ ∣∣δ±∗ − δ±opt

∣∣ = o(ς)

completes the proof.

C.5 Proof of Lemma 4.5.1:

Define m := dimB. Then B = span{b1, . . . , bm}, where b1, . . . , bm is an orthogonal basis,

and for each i = 1, . . . ,m we have (wlog) P[bi · ST̄ = 0] = 1. No arbitrage (i.e. s ∈ A) is

equivalent to the system of inequalities

y · s +
n∑
j=1

|yj|
ξj
2
> 0 for y = ±b1, . . . ,±bm

which simplifies to

−
n∑
j=1

|yj|
ξj
2
< y · s <

n∑
j=1

|yj|
ξj
2

for y = b1, . . . , bm. (C.6)

Because the bi’s are linearly independent, one can see that (C.6) is equivalent to Γ(s)

being inside some rectangular subset of Rm for the function Γ(s) = [bj · s]j, which is also

clearly C2. At this point, (II) should be obvious from (C.6) and the definition of Γ,

(III) is proven, and linear independence of the basis vectors gives (IV ).

To prove (I), we must appeal to some invariance properties of g. Notice that A can

now be reparametrized to the product space
m∏
i=1

[
−

n∑
j=1

|bi · ej| ξj2 ,
n∑
j=1

|bi · ej| ξj2

]
× Rn−m.

Looking at (4.10) and the Neumann boundary condition (only depends on s via the

direction of the normal vector, which only depends on which piece of the boundary s

is on; this can be determined uniquely via Γ(s) by taking a limiting sequence in s to

the boundary), we can see that under this new parametrization, g only depends on s



Appendix C. Proofs 173

through the first m components. Hence, if s1, s2 ∈ A are such that Γ(s1) = Γ(s2), then

g(s1) = g(s2) and (I) is proved.

C.6 Proof of Lemma 4.5.3:

The lower bound is attained by the strategy that immediately liquidates and then does

nothing until time T . For the upper bound we have

Φ ≤ sup
(δ,τ )∈U

Et

XT + qT · ST − φ
T∫
t

`(qu)du

∣∣∣∣∣∣
q=0

+ q · s + ‖q‖1

∑
i

ξi

≤ sup
(δ,τ )∈U ′

Et

XT + qT · ST − φ
T∫
t

`(qu)du

∣∣∣∣∣∣
q=0

+ q · s

+ (T − t)

(∑
i

ξi + sup
δ , i ,±

δh(δ)

)
+ ‖q‖1

∑
i

ξi

= x+
∑
i

ξi sup
ω , t , i

(qt · ei)c3(σ)
√
T − tE [χ1] + (T − t)

∑
i

ξi sup
δ , i ,±

δh(δ)

+ q · s + (T − t)

(∑
i

ξi + sup
δ , i ,±

δh(δ)

)
+ ‖q‖1

∑
i

ξi

where χu is the maximum (in absolute value) of a standard n-dimensional Brownian

motion up to time u and U ′ ⊂ U is the subset of admissible controls with δ = ∞
whenever ‖q‖ = 0. Finally, the result follows from Assumption 4.2.5.

Although this upper bound is crude, it is all that is necessary to continue. We now turn

our attention to each term in the upper bound in this proof. The terms q · s + ‖q‖1

∑
i

ξi

correspond to free liquidation to q = 0 with an added bonus of
∑
i

ξi for unit of each

open position. There is no way for the HFT to do better than this (or even come close)

on an expected value basis. The term (T − t)
(∑

i

ξi + sup
ω , t , i ,±

δh(δ)

)
is an upper bound

on the profit of all future open positions that use filled limit orders. Lastly, we must

consider all market order initiated open positions (for the case where q = 0 is not an

element of the continuation region). If these positions are aided with filled limit orders,

then we have already accounted for such events. Otherwise, in order to produce a profit,

the brownian motion must travel a certain distance from where the open position was

initiated. The total number of times this happens is proportional to
√
T − t, and φ > 0

guarantees that qt(ω) is uniformly bounded. We are able to bound the expected round
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trip profit because the dimensionally reduced no-arbitrage region is bounded.

C.7 Proof of Proposition 4.5.4 (Monotonicity):

Let ϕ1 ≤ ϕ2, Q ∈ N, and ds > 0. Monotonicity of the operator M is obvious. Because

ϕ and its derivatives are continuous, and the domain of ϕ is compact, there exists finite

constants A1, A2 > 0 such that

eκ∆ϕ2 − eκ∆ϕ1 ≥ (e−κϕ2 − e−κϕ1)eκSϕ1 = (e−κ(ϕ2−ϕ1) − 1)eκ∆ϕ1 ≥ −A1(ϕ2 − ϕ1) (C.7)

where A1 does not depend on ϕ1 or ϕ2, S is the shift operator associated with ∆, and

T̂ dt,ds,Qij (t, s,q, ϕ2)− T̂ dt,ds,Qij (t, s,q, ϕ1) ≥ −A2(ϕ2 − ϕ1) (C.8)

where A2 only depends on ds.

Using (C.7) and (C.8) gives

T dt,ds,Q(t, s,q,ϕ2)− T dt,ds,Q(t, s,q, ϕ1)

= ϕ2 − ϕ1 + dt
1

2

n∑
i,j=1

[σσ′]ij

(
T̂ dt,ds,Qij (·, ϕ2)− T̂ dt,ds,Qij (·, ϕ1)

)
+ dt

∑
i,±

λ

κ
e−1+κξ/2

(
eκ∆ϕ2 − eκ∆ϕ1

)
≥ (ϕ2 − ϕ1)

[
1− dt

{
A1

∑
i,±

λ

κ
e−1+κξ/2 +

A2

2

n∑
i,j=1

[σσ′]ij

}]
.

Taking

dt <

(
A1

∑
i,±

λ

κ
e−1+κξ/2 +

A2

2

n∑
i,j=1

[σσ′]ij

)−1

(C.9)

gives monotonicity of T .
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C.8 Proof of Proposition 4.5.6 (Consistency):

Equation (4.20) follows by continuity of ϕ. To prove (4.19), let (t′, s′,q) ∈ [0, T )×A′×Zn
and observe:

1

dt

[
T dt,ds,Q(t′ + dt, s′,q, ϕ)− ϕ(t′, s′,q)

]
=

1

dt
[ϕ(t′ + dt, s′,q)− ϕ(t′, s′,q)]− φ `(q)

+
1

2

n∑
i,j=1

[σσ′]ijT̂ dt,ds,Qij (t′ + dt, s′,q, ϕ)

+
∑
i,±

λ

κ
exp

{
−1 +

κξ

2
+ κ∆ϕ(t′ + dt, s′,q)

}
.

The only term that does not trivially converge is ∆ϕ(t′+dt, s′,q) (the other terms clearly

converge since ϕ ∈ C1,2
b ). But ∆ϕ(t′ + dt, s′,q) is also continuous in (t, s) whenever

Q ≥ ‖q‖∞ + 1, thus proving (4.19).

Observe that we do not need to include a sequence of inventory levels due to the fact

that q resides on the sparse grid Zn. More formally, one could only consider the limiting

sequence (t′ + dt, s′,q′)→ (t, s,q) sufficiently far in the tail when q′ = q onwards.

C.9 Proof of Theorem 5.3.1

Suppose λi,ta0− = θi(1 + δi) with δ ∈ Rn, 0 ≤ ‖δ‖∞ < ε. Defining δ̃ ∈ Rn by δ̃i = δiθi,

we have the exact value of the intensity given by

λi,t(H) =

θ + e−β(t−ta0 )δ̃ +

t∫
ta0

e−β(t−u)ηudNu(H)

 · Ei (C.10)

which is the approximated value plus a linear term in δ̃.

Similarly, the log of the true probability P[τ > Tak(1) |H] also differs from the approxi-

mated probability, as given in Equation (5.11), by a term that is also linear in δ̃. We can,

however, make use of this linearity to justify the asymptotic behaviour of the isolated

likelihood function.
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In particular, the probability in (5.11) is off by a multiplicative factor of

exp
{
−β−1

(
In − e−β(tak−ta0 )

)
δ̃ · 1n

}
= 1− β−1

(
In − e−β(tak−ta0 )

)
δ̃ · 1n + o

(
‖δ̃‖∞

)
(C.11)

= 1 +O
(
‖δ̃‖∞

)
(C.12)

Denote λ̃t as the approximated value of λt. Combining (C.10) and (C.12), we have

L =
∑
H

m∏
k=1

ρHk ·
[
λ̃· +O

(
‖δ̃‖∞

)]
· P[τ > Tak(1) | λ̃·]

[
1 +O

(
‖δ̃‖∞

)]
=
∑
H

m∏
k=1

ρHk · λ̃· · P[τ > Tak(1) | λ̃·]
[
1 +O

(
‖δ̃‖∞

)]
= L̃ ·

[
1 +O

(
‖δ̃‖∞

)]m
= L̃ · [1 +O (ε)]

C.10 Proof of Theorem 5.3.2

Suppose λi,ta0− = θi(1 + δi) with δ ∈ Rn, 0 ≤ ‖δ‖∞ < ε. Then, for t > ta0 , the true

value of λi,t is at most the approximated value, λ̃i,t, multiplied by (1 + δi) (since β is

diagonal with positive elements, we also have the necessary fact that λi,t ≥ λ̃i,t). That

is, λ̃i,t ≤ λi,t ≤ λ̃i,t(1 + δi). Using this knowledge, we have

L̃
L

=
L̃∑

H

m∏
k=1

ρHk · λTak (2),tak−(H) · P[τ > Tak(1) |H,λtao−]

≥ L̃∑
H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H)(1 + δTak (2)) · P[τ > Tak(1) |H,λtao−]

≥ L̃∑
H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H)(1 + δTak (2)) · P[τ > Tak(1) |H, λ̃tao−]
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>
L̃∑

H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H)(1 + ε) · P[τ > Tak(1) |H, λ̃tao−]

= (1 + ε)−m

where the second inequality is due the fact that β−1(In − e−βt)δ · 1n > 0 when β is

diagonal.

Similarly,

L̃
L

=
L̃∑

H

m∏
k=1

ρHk · λTak (2),tak−(H) · P[τ > Tak(1) |H,λtao−]

≤ L̃∑
H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H) · P[τ > Tak(1) |H,λtao−]

<
L̃∑

H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H)P[τ > Tak(1)|H, λ̃tao−] exp{−β−1(In − e−βTak (1))1n · 1n‖θ‖ε}

<
L̃∑

H

m∏
k=1

ρHk · λ̃Tak (2),tak−(H) · P[τ > Tak(1) |H, λ̃tao−] · exp{−β−11n · 1n‖θ‖ε}

= exp

mε‖θ‖
n∑
j=1

β−1
jj



Taking the logarithm of both inequalities yields the result.
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Some Explicit Formulae

D.1 Exact Optimal Trading Strategy in the Single

Asset Hawkes Framework

Although an exact optimal control is not analytically tractable in general, the feedback

control form for the cases of exponential and power-law FPs can be obtained within our

modeling framework.

Proposition D.1.1. Exact Optimal Controls for Exponential and Power-Law.

Suppose that the scale parameter process κ±t is bounded away from zero almost surely.

More specifically, assume that P
[
inft∈[0,T ] κ

±
t > 0

]
= 1.

1. If h±(δ;κ) = e−κ
±δ for δ > 0, then the feedback control of the optimal trading

strategy for the HJB equation (3.7) is given by

δ±t = max

{
1

κ±
−
{
S±qλg − S±λ g

}
, 0

}
. (D.1a)

2. If h±(δ;κ) = (1+κ±δ)γ
±

for δ > 0, then the feedback control of the optimal trading

strategy for the HJB equation (3.7) is given by

δ±t = max

{
α

α− 1

(
1

κ±
−
{
S±qλg − S±λ g

})
, 0

}
. (D.1b)

178
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Here, the ansatz Φ = x + q s + g(t, q, α,λ,κ) with boundary condition g(T, ·) = 0 has

been applied. Furthermore, the solutions in (D.1a) and (D.1b) are unique.

Proof. Applying the first order conditions to the supremum terms and using the specified

ansatz leads, after some simplifications, to the stated result. We show this in detail for

δ− in (D.1a) only as the other cases are analogous. The relevant supremum term in the

HJB equation in (3.7) simplifies to, after applying the ansatz Φ = x+q s+g(t, q, α,λ,κ),

e−δ
−κ−

[
S−λ g − g + δ−

]
+ (1− e−δ−κ−)

[
S−λ g − g

]
. (D.2)

Differentiating (D.2) with respect to δ− and setting the resulting expression equal to zero

yields (D.1a). Checking the second derivative of (D.2) verifies that this point is in fact a

local maximum. If this point is negative, then the optimal δ− is δ− = 0 by Assumption

3.3.1.

Uniqueness is trivial.

D.2 Explicit Computation of bε

Rather than computing bε directly, it is more convenient to compute the expected inte-

grated drift and then identify the appropriate terms. To this end we have the following

result.

Proposition D.2.1. Expected Integrated Drift. The expected integrated drift is

given by the expression

E
[∫ T

t

αs ds

∣∣∣∣λt = λ, αt = α

]
= ε bε(t,λ) + α bα(t) (D.3)

where ε bε(t,λ) = A(t) + λ ·C(t) and

A(t) = ε
ζ
(µ+ã+ − µ−ã−) ((T − t)− bα(t)) + ζ ′ ·B(t) , (D.4a)

B(t) =
ρ

ζ

{
A−1

(
(T − t) I−A−1

(
I− e−A(T−t)))

−(A− ζ I)−1
(
bα(t) I−A−1

(
I− e−A(T−t)))} εa , (D.4b)

C(t) =
ρ

ζ

{
A−1

(
I− e−A(T−t))− (A− ζ I)−1

(
e−ζ(T−t) I− e−A(T−t))} εa . (D.4c)

Lastly, a = (−a−, a+)′ and ζ = (βθ + µ+ν̃ + µ−η̃, βθ + µ+η̃ + µ−ν̃)′.
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Proof. Denoting f(t, α,λ) = E
[∫ T

t
αs ds

∣∣∣λt = λ, αt = α
]
, we have, through a Feynman-

Kac argument, that f satisfies the PDE

(∂t + L)f + λ+
(
S+
λ f − f

)
+ λ−

(
S−λ f − f

)
+ α = 0 , (D.5)

where the infinitesimal generator of α and λ is

L = β(θ − λ−)∂λ− + β(θ − λ+)∂λ+ − ζ α∂α + 1
2
σ2∂αα + µ−

(
S̃−λ − 1

)
+ µ+

(
S̃+
λ − 1

)
.

Substituting the affine ansatz f = A(t) + λC(t) + α bα(t) into the PDE, subject to the

boundary conditions A(T ) = C(T ) = 0, leads to the system of coupled ODEs:{
∂tA(t) + ε(µ+ã+ − µ−ã−) bα(t) + ζ ′ ·C(t) = 0 ,

∂tC(t)−AC(t) + ρ bα(t) εa = 0 .
(D.6)

The solution of this coupled system is given by (D.4). The assertion that A(t)+λ·C(t) =

ε bε with bε provided in (3.15b) can be confirmed by (i) writing down the PDE which the

function bε satisfies, (ii) noting that it admits an affine ansatz Aε(t) +λ ·Cε(t), and (iii)

noting that the ODEs that Aε(t) and Cε(t) satisfy are the same ODEs as A(t) and C(t)

with the same boundary conditions. Uniqueness then implies that they are equal.

D.3 Conditional Mean of LOB Depth Process

Lemma D.3.1. Conditional Mean of κt. Under the dynamics given in (3.3), the

conditional mean m̃±t (u) := E[κ±u |Ft] is

m̃±t (u) = θκ+
ρ

βκ

[
ηκm

±
t (u) + νκm

∓
t (u)

]
+

[
κ±t − θκ −

ρ

βκ
(ηκλ

±
t + νκλ

∓
t )

]
e−βκ(u−t) (D.7)

where m±t (u) are given in Equation (C.2).

Proof. Proceeding as in the proof of Lemma 3.2.2 in Appendix C.1, m̃±t (u) satisfies the

(uncoupled) system of ODEs

dm̃±t (u)

du
+ βκm̃

±
t (u) = βκθκ + ρ

[
ηκm

±
t (u) + νκm

∓
t (u)

]
(D.8)

where m±t (u) is given by Equation (C.2). Solving (D.8) with the initial condition m̃±t (t) =

κ±t gives the stated result.
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Numerical Procedures

E.1 Fitting the Classical Hawkes Model to Level I

Trade Data

When all market orders are influential (i.e. when ρ = 1), the path of the intensity

process is fully specified. Consequently, the likelihood can be written explicitly and a

straightforward maximum likelihood estimation can be used (albeit it must be maxi-

mized numerically). We appeal to Ogata (1978) for results concerning consistency and

asymptotic convexity of the likelihood function.

Suppose {t1, t2, . . . , tn} is a set of observed trade times (with tn ≤ T representing the

time of the last trade) and {B1, B2, . . . , Bn} are buy/sell indicators (i.e. 0 if the trade

is a market sell and 1 if the trade is a market buy). Then the hazard rates and their

integrals at an arbitrary time t can be found by integrating (3.2) and are explicitly given

by

λ±t = θ +
n∑
i=1

H±i e
−β(t−ti) and

∫ t

0

λ±u du = θ t+
n∑
i=1

H±i
1− e−β(t−ti)

β
(E.1)

where H±i = (Bi η + (1−Bi) ν, Bi ν + (1−Bi) η). Finally, the log-likelihood

L = −2θ T +
n∑
i=1

{
Bi log(λ+

ti
) + (1−Bi) log(λ−ti)− (η + ν)

1− e−β(T−ti)

β

}
. (E.2)

Maximizing this log-likelihood results in the MLEs of the model parameters, and substi-

181
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tution back into Equation (E.1) provides the estimated path of activity. Integrating this

activity over the last second, i.e.,
∫ t
t−1

λ±u du, provides us with a smoothed version of the

intensity and shown in Figure 3.1 as the path labeled “Fitted.” In turn, this is directly

comparable to the one second historical intensity in Figure 3.1 labeled as “Historical.”

For the time window 3:30pm to 4:00pm on Feb 1, 2008 for IBM, the estimated parameters

are as follows:

β̂ = 180.05, θ̂ = 2.16, η̂ = 64.16, and ν̂ = 55.74 .

Notice that the spikes in the historical intensity are often above the fitted intensities. The

reason for this difference is that, in this calibration, the fitted intensities assume that all

trades are influential (i.e. ρ = 1). Consequently, the size of the jump in intensities must

be smaller than the true jump size to preserve total mean activity of trades. When a full

calibration is carried out, in which ρ is not necessarily 1 and the influential/non-influential

nature of the event must be filtered, the jump sizes are indeed larger.

E.2 Simulation Procedure for Section 3.6

Here we describe in more detail the approach to simulating the PnL distribution of the

HF strategy. Note that this method produces an exact simulation; specifically, there are

no discretization errors that would be associated with approximating a continuous time

process by a discrete one (i.e., simulated interarrival times are correct up to machine

precision).

1. Generate the duration until the next market order given the current level of activity

λ±tn .

• In between orders, the total rate of order arrival is λt = 2θ + (λ+
tn + λ−tn −

2θ)e−β(t−tn). To obtain a random draw of the time of the next trade, draw a

uniform u ∼ U(0, 1) and find the root of the equation τeτ = 1
2θ

(λtn − 2θ) eς where

ς = λtn−2θ
2θ

+ β
2θ

lnu.69 Then, Tn+1 = 1
β
(τ − ς) is a sample for the next duration and

tn+1 = tn + Tn+1.

2. Decide if the trade is a buy or sell market order.

• The probability that the MO is a buy order is pbuy =
θ+(λ+tn−θ) e

−β Tn+1

2θ+(λ+tn+λ−tn−2θ) e−β Tn+1
.

Therefore, draw a uniform u ∼ U(0, 1), and if u < pbuy, the order is a buy order;

otherwise it is a sell order.
69This can be efficiently computed using the Lambert-W function.
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• Set the buy/sell indicator Bn+1 = 1 if it is a buy market order and Bn+1 = −1

if it is a sell market order.

3. Decide whether the market order filled the agent’s posted limit order.

• Compute the posted limit order at the time of the market order λ±tn+1
= θ +

(λ±tn − θ) e−β Tn+1 .

• Draw a uniform u ∼ U(0, 1).

• If the market order was a sell (buy) order, then if u < e−κ
−
t δ
−
t (u < e−κ

+
t δ

+
t ) the

agent’s buy (sell) limit order was lifted (hit).

4. Update the midprice and drift of the asset.

• Generate two correlated normals Z1 and Z2 with zero mean and covariances:

C(Z1, Z1) = σ2

ζ2

(
Tn+1 − 21−e−ζTn+1

ζ
+ 1−e−2ζTn+1

2ζ

)
,

C(Z2, Z2) = σ2

2ζ
(1− e−2ζTn+1) ,

C(Z1, Z2) = σ2

2ζ2

(
1− 2e−ζTn+1 + e−2ζTn+1

)
.

Generate a third independent standard normal Z.

• Update price and drift. Stn+1 = Stn + αtn
1
ζ
(1 − e−ζn+1) + Z1 + σ

√
Tn+1 Z and

αtn+1 = e−ζTn+1αtn + Z2.

5. Update the inventory and agent’s cash:

Xtn+1 = Xtn +Bn+1Stn+1 + δ+
tn+1
· 1Bn+1=1 + δ−tn+1

· 1Bn+1=−1

and qtn+1 = qtn −Bn+1.

6. Decide if the trade is influential, and update activities, FPs, and drift.

• Draw a uniform u ∼ (0, 1); if u < ρ, the trade is influential, so set Hn+1 = 1;

otherwise set Hn+1 = 0. Finally,

λ±tn+1
= θ + (λ±tn − θ) e

−β Tn+1 +
(

1
2
(1±Bn+1)ν + 1

2
(1∓Bn+1)η

)
Hn+1 ,

κ±tn+1
= θκ + (κ±tn − θκ) e

−βκ Tn+1 +
(

1
2
(1±Bn+1)νκ + 1

2
(1∓Bn+1)ηκ

)
Hn+1 ,

αtn+1 = 1
2
(1 +Bn+1)ε+ − 1

2
(1−Bn+1)ε− + αtn+1 ,

7. Repeat from Step 1 until tn+1 ≥ T .

8. Evolve the diffusion from the last time prior to maturity until maturity using Step

4 with tn+1 = T .
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9. Compute the terminal PnL = XT + qT ST [1− ctrans · sign(qT )], where ctrans is the

terminal liquidation cost.

The PnLs for the other types of HFTs employed in the simulation are obtained similarly.

E.3 Evaluating Non-Trivial Terms in the Numerical

Scheme of Section 4.5.2

This section illustrates how to apply the dimensional reduction to terms where the result

is non-trivial. All expressions are given explicitly for the n = 2 example. In what follows,

all functions are evaluated at a fixed inventory level, q, and this dependence is supressed.

E.3.1 The Mixed Partial Term

For i 6= j, we numerically approximate the following term that appears in (4.12):

∂2g

∂si∂sj
≈ g(si + ds̃, sj + ds̃, ·)− g(si + ds̃, ·)− g(sj + ds̃, ·) + g(·)

ds̃2
(E.3)

where ds̃ is the step size of the finite difference approximation. Note that if we want the

grids to line up in our n = 2 example, we require ds̃ = ds where ds is the step size on

the dimensionally reduced grid given in Appendix E.3.3.

E.3.2 Dimensional Reduction

Recall that Corollary 4.5.2 states that there exists v ∈ Rn \ {0} such that Dvg = 0. In

our example, v = 1, so we take s := s1 − s2.

Continuing from (E.3), we then have

∂2g

∂s1∂s2

≈ 2g(·)− g(s− ds, ·)− g(s + ds, ·)
ds2

(E.4)

where the right hand side is defined on the dimensionally reduced grid and taken at the

previous time step (t+ dt).
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For the 2-dimensional illustrative example studied in Chapter 4, the full numerical ap-

proximation for the diffusive term in Lg is then given by

g(s + ds, t+ dt) + g(s− ds, t+ dt)− 2g(s, t+ dt)

2ds2
([σσ′]11 + [σσ′]22 − 2[σσ′]12) . (E.5)

E.3.3 The Neumann Condition

For s ∈ ∂A, numerically impose (q +∇g) ·n = 0. Take ds̄ = c0ds so the grids match up,

where c0 depends only on the choice of orthogonal basis of B.

In our n = 2 example, we have the normal vector n = (1 , −1) and c0 = 1 resulting

in ∇g ≈ ∓
(
g(s)−g(s±ds)

ds
, g(s±ds)−g(s)

ds

)
with the upper (lower) symbol for reflection on

the upper (lower) boundary when viewed graphically. The relation is only approximate

because we are using a finite difference method. Finally, for s ∈ ∂A, we have

g(s) ≈ g(s± ds)± (q1 − q2)ds

2
. (E.6)

E.3.4 Explicit Example when n = 3

The analogue of the right-most coefficient in (E.5) is given by

[σσ′]11 + [σσ′]22 + [σσ′]33 − 2[σσ′]12 − 2[σσ′]13 + 2[σσ′]23 (E.7)

and, for s ∈ ∂A, we have

g(s) ≈ g(s± ds)± (q1 − q2 − q3)ds

3
. (E.8)

E.4 Computing the Posterior Distribution of λt

To compute the posterior probabilities in a cluster of size m, we simply apply the Bayes

Rule since we know the prior probability of each possible intensity path. In particular,

for each potential path, we compute the likelihood of the data given an H (jump type

indicator) sequence, multiply the likelihood by the prior probability for Hi (denoted qi
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for the ith path), and then normalize these quantities so that they sum to 1. That is,

P
[
λt = λ(i) | F t

]
≈ P

[
λt = λ(i) |σ

(
{Nu}u∈[tk0 ,t]

)
, λtk0 = θ

]
=

qiL̂i∑
j

qjL̂j
(E.9)

with L̂i = L̃(Hi) · P[T > Tam+1(1)|Hi] (E.10)

and L̃(H) given by Equation (5.9). This is analogous to the Isolated Likelihood function

given in (5.9), except it contains an extra survival probability term to account for no

events since the last arrival.
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